Skip to main content
Top
Published in: Journal of Materials Science 6/2018

20-11-2017 | Energy materials

Solvothermally synthesized Ti-rich LiMnTiO4 as cathode material for high Li storage

Authors: Thangaian Kesavan, Chenrayan Senthil, Manickam Sasidharan

Published in: Journal of Materials Science | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ti-doped LiMn1.8Ti0.2O4 and LiMnTiO4 spinel materials as cathode for Li-ion batteries are synthesized by solvothermal method using ethylene glycol as solvent. Structural and morphological features of spinel materials are evaluated with X-ray diffraction, field emission scanning electron microscope, and high-resolution transmission electron microscope techniques. Energy-dispersive X-ray and X-ray photoelectron spectroscopy analyzes confirm the presence of different elements in the Ti-doped spinel. Electrochemical Li insertion properties are evaluated by potentiostatic and galvanostatic modes between 1.5 and 4.8 V versus Li/Li+ where the Ti-rich LiMnTiO4 (Mn/Ti = 1) exhibits high specific capacity of 173 mAh g−1 after 50 charge/discharge cycles compared to LiMn1.8Ti0.2O4 (Mn/Ti = 9, 132 mAh g−1) with less Ti content. The titanium-rich LiMnTiO4 exhibits a well-defined voltage profile, higher specific capacity, and enhanced electrochemical performance over Ti-poor LiMn1.8Ti0.2O4 which could be attributed to high microstructural stability of Mn cations with suppressed Jahn–Teller distortion and facilitation of Mn2+/Mn4+ redox couple during the electrochemical charge/discharges.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRef Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRef
2.
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef
3.
go back to reference Ammundsen B, Paulsen J (2001) Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater 13:943–955CrossRef Ammundsen B, Paulsen J (2001) Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater 13:943–955CrossRef
4.
go back to reference Ohzuku T, Ueda A (1994) Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ion 69:201–211CrossRef Ohzuku T, Ueda A (1994) Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ion 69:201–211CrossRef
5.
go back to reference Ohzuku T, Ueda A, Nagayama N (1993) Electrochemistry and structural chemistry of LiNiO2 (R\(\bar{3}\)m) for 4 volt secondary lithium cells. J Electrochem Soc 140:1862–1870CrossRef Ohzuku T, Ueda A, Nagayama N (1993) Electrochemistry and structural chemistry of LiNiO2 (R\(\bar{3}\)m) for 4 volt secondary lithium cells. J Electrochem Soc 140:1862–1870CrossRef
6.
go back to reference Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952CrossRef Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952CrossRef
7.
go back to reference Shaju KM, Bruce PG (2008) A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem Mater 20:5557–5562CrossRef Shaju KM, Bruce PG (2008) A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem Mater 20:5557–5562CrossRef
8.
go back to reference Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10:3852–3856CrossRef Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10:3852–3856CrossRef
9.
go back to reference Abello L, Husson E, Repelin Y, Lucazeau G (1983) Vibrational spectra and valence force field of crystalline V2O5. Spectrochim Acta 39:641–651CrossRef Abello L, Husson E, Repelin Y, Lucazeau G (1983) Vibrational spectra and valence force field of crystalline V2O5. Spectrochim Acta 39:641–651CrossRef
10.
go back to reference Zhang X, Yang M, Zhao X, Wang Y, Wang M, Ma L (2015) The spinel phase LiMnTiO4 as a potential cathode for rechargeable lithium ion batteries. J Mater Sci Mater Electron 26:6366–6372CrossRef Zhang X, Yang M, Zhao X, Wang Y, Wang M, Ma L (2015) The spinel phase LiMnTiO4 as a potential cathode for rechargeable lithium ion batteries. J Mater Sci Mater Electron 26:6366–6372CrossRef
11.
go back to reference Chen R, Knapp M, Yavuz M, Heinzmann R, Wang D, Ren S, Trouillet V, Lebedkin S, Doyle S, Hahn H, Ehrenberg H, Indris S (2014) Reversible Li+ storage in a LiMnTiO4 spinel and its structural transition mechanisms. J Phys Chem C 118:12608–12616CrossRef Chen R, Knapp M, Yavuz M, Heinzmann R, Wang D, Ren S, Trouillet V, Lebedkin S, Doyle S, Hahn H, Ehrenberg H, Indris S (2014) Reversible Li+ storage in a LiMnTiO4 spinel and its structural transition mechanisms. J Phys Chem C 118:12608–12616CrossRef
12.
go back to reference Amigues AM, Glass HFJ, Duttonz SE (2016) LiMnTiO4 with the Na0.44MnO2 structure as a positive electrode for lithium-ion batteries. J Electrochem Soc 163:A396–A400CrossRef Amigues AM, Glass HFJ, Duttonz SE (2016) LiMnTiO4 with the Na0.44MnO2 structure as a positive electrode for lithium-ion batteries. J Electrochem Soc 163:A396–A400CrossRef
13.
go back to reference Murphy DT, Schmid S, Hester JR, Blanchard PER, Miiller W (2015) Coordination site disorder in spinel-type LiMnTiO4. Inorg Chem 54:4636–4643CrossRef Murphy DT, Schmid S, Hester JR, Blanchard PER, Miiller W (2015) Coordination site disorder in spinel-type LiMnTiO4. Inorg Chem 54:4636–4643CrossRef
14.
go back to reference Sebastian L, Gopalakrishnan J (2003) Li2MTiO4 (M = Mn, Fe Co, Ni): New cation-disordered rocksalt oxides exhibiting oxidative deintercalation of lithium. Synthesis of an ordered Li2NiTiO4. J Solid State Chem 172:171–177CrossRef Sebastian L, Gopalakrishnan J (2003) Li2MTiO4 (M = Mn, Fe Co, Ni): New cation-disordered rocksalt oxides exhibiting oxidative deintercalation of lithium. Synthesis of an ordered Li2NiTiO4. J Solid State Chem 172:171–177CrossRef
15.
go back to reference Aravindan V, Chuilinga W, Madhavi S (2012) High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J Mater Chem 22:16026–16031CrossRef Aravindan V, Chuilinga W, Madhavi S (2012) High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J Mater Chem 22:16026–16031CrossRef
16.
go back to reference Aravindan V, Ling WC, Madhavi S (2012) LiCrTiO4: a high-performance insertion anode for lithium-ion batteries. ChemPhysChem 13:3263–3266CrossRef Aravindan V, Ling WC, Madhavi S (2012) LiCrTiO4: a high-performance insertion anode for lithium-ion batteries. ChemPhysChem 13:3263–3266CrossRef
17.
go back to reference Wu J, Wang H, Quan J, Ma Z, Li D (2015) Enhanced electrochemical performance of Li2NiTiO4 with micro-structural rearrangement via urea treatment. RSC Adv 5:2844–2850CrossRef Wu J, Wang H, Quan J, Ma Z, Li D (2015) Enhanced electrochemical performance of Li2NiTiO4 with micro-structural rearrangement via urea treatment. RSC Adv 5:2844–2850CrossRef
18.
go back to reference Yang M, Zhao X, Bian Y, Ma L, Ding Y, Shen X (2012) Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. J Mater Chem 22:6200–6205CrossRef Yang M, Zhao X, Bian Y, Ma L, Ding Y, Shen X (2012) Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. J Mater Chem 22:6200–6205CrossRef
19.
go back to reference Kuzma M, Dominko R, Meden A, Makovec D, Bele M, Jamnik J, Gabercek M (2009) Electrochemical activity of Li2FeTiO4 and Li2MnTiO4 as potential active materials for Li ion batteries: a comparison with Li2NiTiO4. J Power Sources 189:81–88CrossRef Kuzma M, Dominko R, Meden A, Makovec D, Bele M, Jamnik J, Gabercek M (2009) Electrochemical activity of Li2FeTiO4 and Li2MnTiO4 as potential active materials for Li ion batteries: a comparison with Li2NiTiO4. J Power Sources 189:81–88CrossRef
20.
go back to reference Yang M, Zhao X, Ma L, Yang H, Shen X, Bian Y (2015) Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries. J Alloys Compd 618:210–216CrossRef Yang M, Zhao X, Ma L, Yang H, Shen X, Bian Y (2015) Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries. J Alloys Compd 618:210–216CrossRef
22.
go back to reference Chen R, Knapp M, Yavuz M, Ren S, Witte R, Heinzmann R, Hahn H, Ehrenberg H, Indris S (2015) Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li+ storage. Phys Chem Chem Phys 17:1482–1488CrossRef Chen R, Knapp M, Yavuz M, Ren S, Witte R, Heinzmann R, Hahn H, Ehrenberg H, Indris S (2015) Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li+ storage. Phys Chem Chem Phys 17:1482–1488CrossRef
23.
go back to reference Trócoli R, Cruz-Yusta M, Morales J, Santos-Pena J (2010) On the limited electroactivity of Li2NiTiO4 nanoparticles in lithium batteries. Electrochim Acta 100:93–100CrossRef Trócoli R, Cruz-Yusta M, Morales J, Santos-Pena J (2010) On the limited electroactivity of Li2NiTiO4 nanoparticles in lithium batteries. Electrochim Acta 100:93–100CrossRef
24.
go back to reference Yoo KS, Cho NW, Oh YJ (1998) Structural and electrical characterization of Li(Mn1−δTiδ)2O4 electrode materials. Solid State Ion 113:43–49CrossRef Yoo KS, Cho NW, Oh YJ (1998) Structural and electrical characterization of Li(Mn1−δTiδ)2O4 electrode materials. Solid State Ion 113:43–49CrossRef
25.
go back to reference Yang M, Zhao X, Yao C, Kong Y, Ma L, Shen X (2016) Nanostructured cation disordered Li2FeTiO4/graphene composite as high capacity cathode for lithium-ion batteries. Mater Technol 31:537–543CrossRef Yang M, Zhao X, Yao C, Kong Y, Ma L, Shen X (2016) Nanostructured cation disordered Li2FeTiO4/graphene composite as high capacity cathode for lithium-ion batteries. Mater Technol 31:537–543CrossRef
26.
go back to reference Zheng X, Ye Y, Yang Q, Geng B, Zhang X (2016) Hierarchical structures composed of MnCo2O4@MnO2 core–shell nanowire arrays with enhanced supercapacitor properties. Dalton Trans 45:572–578CrossRef Zheng X, Ye Y, Yang Q, Geng B, Zhang X (2016) Hierarchical structures composed of MnCo2O4@MnO2 core–shell nanowire arrays with enhanced supercapacitor properties. Dalton Trans 45:572–578CrossRef
27.
go back to reference Mao J, Peng T, Zhang X, Li K, Le Y, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal Sci Technol 3:1253–1260CrossRef Mao J, Peng T, Zhang X, Li K, Le Y, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal Sci Technol 3:1253–1260CrossRef
28.
go back to reference Tang D, Ben L, Sun Y, Chen B, Yang Z, Gua L, Huang X (2014) Electrochemical behavior and surface structural change of LiMn2O4 charged to 5.1 V. J Mater Chem A 2:14519–14527CrossRef Tang D, Ben L, Sun Y, Chen B, Yang Z, Gua L, Huang X (2014) Electrochemical behavior and surface structural change of LiMn2O4 charged to 5.1 V. J Mater Chem A 2:14519–14527CrossRef
29.
go back to reference Xia H, Xia Q, Lin B, Zhu J, Seo JK, Meng YS (2016) Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22:475–482CrossRef Xia H, Xia Q, Lin B, Zhu J, Seo JK, Meng YS (2016) Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22:475–482CrossRef
30.
go back to reference Zhuo HT, Wan S, He CX, Zhang QL, Li CH, Gui DY, Zhu CZ, Niu HB, Liu JH (2014) Improved electrochemical performance of spinel LiMn2O4 in situ coated with graphene-like membrane. J Power Sources 247:721–728CrossRef Zhuo HT, Wan S, He CX, Zhang QL, Li CH, Gui DY, Zhu CZ, Niu HB, Liu JH (2014) Improved electrochemical performance of spinel LiMn2O4 in situ coated with graphene-like membrane. J Power Sources 247:721–728CrossRef
31.
go back to reference Wang SH, Yang J, Wu XB, Li YX, Gong ZL, Wen W, Lin M, Yang JH, Yang Y (2014) Toward high capacity and stable manganese-spinel electrode materials: a case study of Ti-substituted system. J Power Sources 245:570–578CrossRef Wang SH, Yang J, Wu XB, Li YX, Gong ZL, Wen W, Lin M, Yang JH, Yang Y (2014) Toward high capacity and stable manganese-spinel electrode materials: a case study of Ti-substituted system. J Power Sources 245:570–578CrossRef
32.
go back to reference Bao Y, Zhang X, Zhang X, Yang L, Zhang X, Chen H, Yang M, Fang D (2016) Free-standing and flexible LiMnTiO4/carbon nanotube cathodes for high performance lithium ion batteries. J Power Sources 321:120–125CrossRef Bao Y, Zhang X, Zhang X, Yang L, Zhang X, Chen H, Yang M, Fang D (2016) Free-standing and flexible LiMnTiO4/carbon nanotube cathodes for high performance lithium ion batteries. J Power Sources 321:120–125CrossRef
Metadata
Title
Solvothermally synthesized Ti-rich LiMnTiO4 as cathode material for high Li storage
Authors
Thangaian Kesavan
Chenrayan Senthil
Manickam Sasidharan
Publication date
20-11-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1819-6

Other articles of this Issue 6/2018

Journal of Materials Science 6/2018 Go to the issue

Premium Partners