Skip to main content
Erschienen in: Journal of Materials Science 6/2018

20.11.2017 | Energy materials

Solvothermally synthesized Ti-rich LiMnTiO4 as cathode material for high Li storage

verfasst von: Thangaian Kesavan, Chenrayan Senthil, Manickam Sasidharan

Erschienen in: Journal of Materials Science | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ti-doped LiMn1.8Ti0.2O4 and LiMnTiO4 spinel materials as cathode for Li-ion batteries are synthesized by solvothermal method using ethylene glycol as solvent. Structural and morphological features of spinel materials are evaluated with X-ray diffraction, field emission scanning electron microscope, and high-resolution transmission electron microscope techniques. Energy-dispersive X-ray and X-ray photoelectron spectroscopy analyzes confirm the presence of different elements in the Ti-doped spinel. Electrochemical Li insertion properties are evaluated by potentiostatic and galvanostatic modes between 1.5 and 4.8 V versus Li/Li+ where the Ti-rich LiMnTiO4 (Mn/Ti = 1) exhibits high specific capacity of 173 mAh g−1 after 50 charge/discharge cycles compared to LiMn1.8Ti0.2O4 (Mn/Ti = 9, 132 mAh g−1) with less Ti content. The titanium-rich LiMnTiO4 exhibits a well-defined voltage profile, higher specific capacity, and enhanced electrochemical performance over Ti-poor LiMn1.8Ti0.2O4 which could be attributed to high microstructural stability of Mn cations with suppressed Jahn–Teller distortion and facilitation of Mn2+/Mn4+ redox couple during the electrochemical charge/discharges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRef Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRef
2.
Zurück zum Zitat Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef
3.
Zurück zum Zitat Ammundsen B, Paulsen J (2001) Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater 13:943–955CrossRef Ammundsen B, Paulsen J (2001) Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater 13:943–955CrossRef
4.
Zurück zum Zitat Ohzuku T, Ueda A (1994) Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ion 69:201–211CrossRef Ohzuku T, Ueda A (1994) Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ion 69:201–211CrossRef
5.
Zurück zum Zitat Ohzuku T, Ueda A, Nagayama N (1993) Electrochemistry and structural chemistry of LiNiO2 (R\(\bar{3}\)m) for 4 volt secondary lithium cells. J Electrochem Soc 140:1862–1870CrossRef Ohzuku T, Ueda A, Nagayama N (1993) Electrochemistry and structural chemistry of LiNiO2 (R\(\bar{3}\)m) for 4 volt secondary lithium cells. J Electrochem Soc 140:1862–1870CrossRef
6.
Zurück zum Zitat Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952CrossRef Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952CrossRef
7.
Zurück zum Zitat Shaju KM, Bruce PG (2008) A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem Mater 20:5557–5562CrossRef Shaju KM, Bruce PG (2008) A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem Mater 20:5557–5562CrossRef
8.
Zurück zum Zitat Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10:3852–3856CrossRef Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10:3852–3856CrossRef
9.
Zurück zum Zitat Abello L, Husson E, Repelin Y, Lucazeau G (1983) Vibrational spectra and valence force field of crystalline V2O5. Spectrochim Acta 39:641–651CrossRef Abello L, Husson E, Repelin Y, Lucazeau G (1983) Vibrational spectra and valence force field of crystalline V2O5. Spectrochim Acta 39:641–651CrossRef
10.
Zurück zum Zitat Zhang X, Yang M, Zhao X, Wang Y, Wang M, Ma L (2015) The spinel phase LiMnTiO4 as a potential cathode for rechargeable lithium ion batteries. J Mater Sci Mater Electron 26:6366–6372CrossRef Zhang X, Yang M, Zhao X, Wang Y, Wang M, Ma L (2015) The spinel phase LiMnTiO4 as a potential cathode for rechargeable lithium ion batteries. J Mater Sci Mater Electron 26:6366–6372CrossRef
11.
Zurück zum Zitat Chen R, Knapp M, Yavuz M, Heinzmann R, Wang D, Ren S, Trouillet V, Lebedkin S, Doyle S, Hahn H, Ehrenberg H, Indris S (2014) Reversible Li+ storage in a LiMnTiO4 spinel and its structural transition mechanisms. J Phys Chem C 118:12608–12616CrossRef Chen R, Knapp M, Yavuz M, Heinzmann R, Wang D, Ren S, Trouillet V, Lebedkin S, Doyle S, Hahn H, Ehrenberg H, Indris S (2014) Reversible Li+ storage in a LiMnTiO4 spinel and its structural transition mechanisms. J Phys Chem C 118:12608–12616CrossRef
12.
Zurück zum Zitat Amigues AM, Glass HFJ, Duttonz SE (2016) LiMnTiO4 with the Na0.44MnO2 structure as a positive electrode for lithium-ion batteries. J Electrochem Soc 163:A396–A400CrossRef Amigues AM, Glass HFJ, Duttonz SE (2016) LiMnTiO4 with the Na0.44MnO2 structure as a positive electrode for lithium-ion batteries. J Electrochem Soc 163:A396–A400CrossRef
13.
Zurück zum Zitat Murphy DT, Schmid S, Hester JR, Blanchard PER, Miiller W (2015) Coordination site disorder in spinel-type LiMnTiO4. Inorg Chem 54:4636–4643CrossRef Murphy DT, Schmid S, Hester JR, Blanchard PER, Miiller W (2015) Coordination site disorder in spinel-type LiMnTiO4. Inorg Chem 54:4636–4643CrossRef
14.
Zurück zum Zitat Sebastian L, Gopalakrishnan J (2003) Li2MTiO4 (M = Mn, Fe Co, Ni): New cation-disordered rocksalt oxides exhibiting oxidative deintercalation of lithium. Synthesis of an ordered Li2NiTiO4. J Solid State Chem 172:171–177CrossRef Sebastian L, Gopalakrishnan J (2003) Li2MTiO4 (M = Mn, Fe Co, Ni): New cation-disordered rocksalt oxides exhibiting oxidative deintercalation of lithium. Synthesis of an ordered Li2NiTiO4. J Solid State Chem 172:171–177CrossRef
15.
Zurück zum Zitat Aravindan V, Chuilinga W, Madhavi S (2012) High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J Mater Chem 22:16026–16031CrossRef Aravindan V, Chuilinga W, Madhavi S (2012) High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J Mater Chem 22:16026–16031CrossRef
16.
Zurück zum Zitat Aravindan V, Ling WC, Madhavi S (2012) LiCrTiO4: a high-performance insertion anode for lithium-ion batteries. ChemPhysChem 13:3263–3266CrossRef Aravindan V, Ling WC, Madhavi S (2012) LiCrTiO4: a high-performance insertion anode for lithium-ion batteries. ChemPhysChem 13:3263–3266CrossRef
17.
Zurück zum Zitat Wu J, Wang H, Quan J, Ma Z, Li D (2015) Enhanced electrochemical performance of Li2NiTiO4 with micro-structural rearrangement via urea treatment. RSC Adv 5:2844–2850CrossRef Wu J, Wang H, Quan J, Ma Z, Li D (2015) Enhanced electrochemical performance of Li2NiTiO4 with micro-structural rearrangement via urea treatment. RSC Adv 5:2844–2850CrossRef
18.
Zurück zum Zitat Yang M, Zhao X, Bian Y, Ma L, Ding Y, Shen X (2012) Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. J Mater Chem 22:6200–6205CrossRef Yang M, Zhao X, Bian Y, Ma L, Ding Y, Shen X (2012) Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. J Mater Chem 22:6200–6205CrossRef
19.
Zurück zum Zitat Kuzma M, Dominko R, Meden A, Makovec D, Bele M, Jamnik J, Gabercek M (2009) Electrochemical activity of Li2FeTiO4 and Li2MnTiO4 as potential active materials for Li ion batteries: a comparison with Li2NiTiO4. J Power Sources 189:81–88CrossRef Kuzma M, Dominko R, Meden A, Makovec D, Bele M, Jamnik J, Gabercek M (2009) Electrochemical activity of Li2FeTiO4 and Li2MnTiO4 as potential active materials for Li ion batteries: a comparison with Li2NiTiO4. J Power Sources 189:81–88CrossRef
20.
Zurück zum Zitat Yang M, Zhao X, Ma L, Yang H, Shen X, Bian Y (2015) Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries. J Alloys Compd 618:210–216CrossRef Yang M, Zhao X, Ma L, Yang H, Shen X, Bian Y (2015) Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries. J Alloys Compd 618:210–216CrossRef
22.
Zurück zum Zitat Chen R, Knapp M, Yavuz M, Ren S, Witte R, Heinzmann R, Hahn H, Ehrenberg H, Indris S (2015) Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li+ storage. Phys Chem Chem Phys 17:1482–1488CrossRef Chen R, Knapp M, Yavuz M, Ren S, Witte R, Heinzmann R, Hahn H, Ehrenberg H, Indris S (2015) Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li+ storage. Phys Chem Chem Phys 17:1482–1488CrossRef
23.
Zurück zum Zitat Trócoli R, Cruz-Yusta M, Morales J, Santos-Pena J (2010) On the limited electroactivity of Li2NiTiO4 nanoparticles in lithium batteries. Electrochim Acta 100:93–100CrossRef Trócoli R, Cruz-Yusta M, Morales J, Santos-Pena J (2010) On the limited electroactivity of Li2NiTiO4 nanoparticles in lithium batteries. Electrochim Acta 100:93–100CrossRef
24.
Zurück zum Zitat Yoo KS, Cho NW, Oh YJ (1998) Structural and electrical characterization of Li(Mn1−δTiδ)2O4 electrode materials. Solid State Ion 113:43–49CrossRef Yoo KS, Cho NW, Oh YJ (1998) Structural and electrical characterization of Li(Mn1−δTiδ)2O4 electrode materials. Solid State Ion 113:43–49CrossRef
25.
Zurück zum Zitat Yang M, Zhao X, Yao C, Kong Y, Ma L, Shen X (2016) Nanostructured cation disordered Li2FeTiO4/graphene composite as high capacity cathode for lithium-ion batteries. Mater Technol 31:537–543CrossRef Yang M, Zhao X, Yao C, Kong Y, Ma L, Shen X (2016) Nanostructured cation disordered Li2FeTiO4/graphene composite as high capacity cathode for lithium-ion batteries. Mater Technol 31:537–543CrossRef
26.
Zurück zum Zitat Zheng X, Ye Y, Yang Q, Geng B, Zhang X (2016) Hierarchical structures composed of MnCo2O4@MnO2 core–shell nanowire arrays with enhanced supercapacitor properties. Dalton Trans 45:572–578CrossRef Zheng X, Ye Y, Yang Q, Geng B, Zhang X (2016) Hierarchical structures composed of MnCo2O4@MnO2 core–shell nanowire arrays with enhanced supercapacitor properties. Dalton Trans 45:572–578CrossRef
27.
Zurück zum Zitat Mao J, Peng T, Zhang X, Li K, Le Y, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal Sci Technol 3:1253–1260CrossRef Mao J, Peng T, Zhang X, Li K, Le Y, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal Sci Technol 3:1253–1260CrossRef
28.
Zurück zum Zitat Tang D, Ben L, Sun Y, Chen B, Yang Z, Gua L, Huang X (2014) Electrochemical behavior and surface structural change of LiMn2O4 charged to 5.1 V. J Mater Chem A 2:14519–14527CrossRef Tang D, Ben L, Sun Y, Chen B, Yang Z, Gua L, Huang X (2014) Electrochemical behavior and surface structural change of LiMn2O4 charged to 5.1 V. J Mater Chem A 2:14519–14527CrossRef
29.
Zurück zum Zitat Xia H, Xia Q, Lin B, Zhu J, Seo JK, Meng YS (2016) Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22:475–482CrossRef Xia H, Xia Q, Lin B, Zhu J, Seo JK, Meng YS (2016) Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22:475–482CrossRef
30.
Zurück zum Zitat Zhuo HT, Wan S, He CX, Zhang QL, Li CH, Gui DY, Zhu CZ, Niu HB, Liu JH (2014) Improved electrochemical performance of spinel LiMn2O4 in situ coated with graphene-like membrane. J Power Sources 247:721–728CrossRef Zhuo HT, Wan S, He CX, Zhang QL, Li CH, Gui DY, Zhu CZ, Niu HB, Liu JH (2014) Improved electrochemical performance of spinel LiMn2O4 in situ coated with graphene-like membrane. J Power Sources 247:721–728CrossRef
31.
Zurück zum Zitat Wang SH, Yang J, Wu XB, Li YX, Gong ZL, Wen W, Lin M, Yang JH, Yang Y (2014) Toward high capacity and stable manganese-spinel electrode materials: a case study of Ti-substituted system. J Power Sources 245:570–578CrossRef Wang SH, Yang J, Wu XB, Li YX, Gong ZL, Wen W, Lin M, Yang JH, Yang Y (2014) Toward high capacity and stable manganese-spinel electrode materials: a case study of Ti-substituted system. J Power Sources 245:570–578CrossRef
32.
Zurück zum Zitat Bao Y, Zhang X, Zhang X, Yang L, Zhang X, Chen H, Yang M, Fang D (2016) Free-standing and flexible LiMnTiO4/carbon nanotube cathodes for high performance lithium ion batteries. J Power Sources 321:120–125CrossRef Bao Y, Zhang X, Zhang X, Yang L, Zhang X, Chen H, Yang M, Fang D (2016) Free-standing and flexible LiMnTiO4/carbon nanotube cathodes for high performance lithium ion batteries. J Power Sources 321:120–125CrossRef
Metadaten
Titel
Solvothermally synthesized Ti-rich LiMnTiO4 as cathode material for high Li storage
verfasst von
Thangaian Kesavan
Chenrayan Senthil
Manickam Sasidharan
Publikationsdatum
20.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1819-6

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Science 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.