Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2019

Open Access 01-12-2019 | Research

Some fractional integral inequalities of type Hermite–Hadamard through convexity

Authors: Shahid Qaisar, Jamshed Nasir, Saad Ihsan Butt, Asma Asma, Farooq Ahmad, Muhammad Iqbal, Sajjad Hussain

Published in: Journal of Inequalities and Applications | Issue 1/2019

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In the present article, the authors have established some Hermite–Hadamard type integral inequalities via Riemann–Liouville fractional integrals that generalize Hermite–Hadamard type inequalities and a few other results (Dragomir and Agarwal in Appl. Math. Lett. 11(5):91–95, 1998; Dragomir, Chob and Kimc in J. Math. Anal. Appl. 245(2):489–501, 2000; Yang, Hwang and Tseng in Comput. Math. Appl. 47(2–3):207–216, 2004).
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

A function \(g:I\subset \mathbb{R}\rightarrow \mathbb{R}\) is called convex in the classical sense, if the inequality
$$ g \bigl( \omega x+ ( 1-\omega ) y \bigr) \leq \omega g ( x ) + ( 1-\omega ) g ( y ) $$
holds for all \(x,y\in I\) and \(\omega \in [ 0,1 ] \). In fact a large number of articles have been written on inequalities using classical convexity but one of the most important and well known is Hermite–Hadamard’s inequality, This double inequality is stated as follows [4]. Let \(g:I\subset \mathbb{R}\rightarrow \mathbb{R}\) be a convex function on the interval I of real numbers and \(x,y\in I\) with \(x< y\). Then
$$ g\biggl( \frac{x+y}{2}\biggr) \leq \frac{1}{y-x}\int_{x}^{y}g(t)\,dt \leq \frac{g(x)+g(y)}{2}. $$
Both inequalities hold in the reversed direction for g to be concave. Several improvements and extensions of Hermite–Hadamard’s type inequality to different kinds of convexity were established by different researchers.
First we recall some important definitions and results which we have used in this paper.
Definition 1
For \(g\in L_{1}[a,b]\). The left-sided and right-sided Riemann–Liouville fractional integrals of order \(\alpha >0\) with \(a\geq 0\) are defined by
$$ J_{a^{+}}^{\alpha }g(x)=\frac{1}{\varGamma (\alpha )} \int _{a}^{x}(x-t)^{ \alpha -1}g(t)\,dt, \quad a< x, $$
and
$$ J_{b^{-}}^{\alpha }g(x)=\frac{1}{\varGamma (\alpha )} \int _{x}^{b}(t-x)^{ \alpha -1}g(t)\,dt, \quad x< b, $$
respectively, where \(\varGamma (\cdot)\) is Gamma function and its definition is \(\varGamma (\alpha )=\int _{0}^{\infty }e^{-u}u ^{\alpha -1}\,du\). It is to be noted that \(J_{a^{+}} ^{0}g(x)=J_{b^{-}}^{0}g(x)=g(x)\).
In the case of \(\alpha =1\), the fractional integral reduces to the classical integral.
Properties relating to this operator can be found in [5] and for useful details on Hermite-Hadamard type inequalities connected with fractional integral inequalities, we refer the reader to [517] and the references therein.
In [18] Dragomir and Agarwal, obtained inequalities for differentiable convex mappings which are connected with the right-hand side of Hermite-Hadamard’s (trapezoid) inequality and applied them to obtain some elementary inequalities for real numbers and in numerical integration as follows.
Theorem 1
Let \(g:I\subset R\rightarrow R\) be a differentiable mapping on \(I^{o}\) where \(x, y\in I\) with \(x< y\). If \(\vert g^{\prime } \vert ^{q}\) is convex on \([x,y]\), for some \(q\geq 1\) then the following inequality holds:
$$ \biggl\vert \frac{g(x)+g(y)}{2}-\frac{1}{y-x} \int _{x}^{y}f(u)\,du \biggr\vert \leq \frac{y-x}{8} \bigl[ \bigl\vert g^{\prime }(x) \bigr\vert + \bigl\vert g^{\prime }(y) \bigr\vert \bigr]. $$
(1)
In [2] Dragomir, obtained inequalities for a Lipschitzian mapping which are in connection with the right-hand side of Hermite-Hadamard’s (trapezoid) inequality.
Theorem 2
Let \(g:I\subset R\rightarrow R\) be a M-Lipschitzian mapping on I where \(x,y\in I\) with \(x< y\), then we have the following inequality:
$$ \biggl\vert \frac{g(x)+g(y)}{2}-\frac{1}{y-x} \int _{x}^{y}f(u)\,du \biggr\vert \leq \frac{M}{3} ( y-x ). $$
(2)
In [3] Yang, obtained Hermite–Hadamard’s (trapezoid) inequalities for differentiable mapping for concave function.
Theorem 3
Let \(I\subset \mathbb{R}\) be an open interval, \(l,m,n,P,Q \in I\) with \(l\leq P\leq n\leq Q\leq m\) (\(n\neq l,m\)) \(l,m,n\in \mathbb{R}\) and \(g:[x,y]\rightarrow \mathbb{R}\) be a differentiable function. If \(\vert g^{\prime } \vert ^{q}\) is concave on \([x,y]\) and \(1\leq \theta \leq q\), then
$$ \begin{aligned}[b] &\biggl\vert ( P-l ) g ( l ) + ( m-Q ) g ( m ) + ( Q-P ) g ( n ) - \int _{x} ^{y}g(u)\,du \biggr\vert \\ &\quad \leq K ( P,Q,n, \theta ) \cdot J ( P,Q,n, \theta ),\end{aligned} $$
(3)
where
$$ K ( P,Q,n,\theta ) = \biggl( \frac{1}{2} \bigl[ ( P-l ) ^{2}+ ( n-P ) ^{2}+ ( Q-n ) ^{2}+ ( m-Q ) ^{2} \bigr] \biggr) ^{\frac{ ( \theta -1 ) }{\theta }} $$
and
$$\begin{aligned}& J ( P,Q,n,\theta ) \\& \quad = \biggl( \frac{1}{2} \bigl[ ( P-l ) ^{2}+ ( n-P ) ^{2} \bigr] \biggl\vert g^{\prime } \biggl( \frac{ ( P-l ) ^{2}+ ( n-P ) ^{2} ( 2n-3l+P ) }{3 [ ( P-l ) ^{2}+ ( n-P ) ^{2} ] }+l \biggr) \biggr\vert ^{\theta } \biggr) ^{\frac{ ( \theta -1 ) }{\theta }} \\& \qquad {}+ \biggl( \frac{1}{2} \bigl[ ( Q-n ) ^{2}+ ( m-Q ) ^{2} \bigr] \biggl\vert g^{\prime } \biggl( m-\frac{ ( Q-n ) ^{2} ( 3m-2n-Q ) + ( m-Q ) ^{3}}{3 [ ( Q-n ) ^{2}+ ( m-Q ) ^{2} ] } \biggr) \biggr\vert ^{\theta } \biggr) ^{\frac{ ( \theta -1 ) }{\theta }}. \end{aligned}$$
Corollary 1
Under the assumptions of Theorem 3 with \(P=Q=n= ( l+m ) /2\) and \(\theta =1\), we get the following inequality:
$$ \biggl\vert \frac{g(x)+g(y)}{2}-\frac{1}{y-x} \int _{x}^{y}g(u)\,du \biggr\vert \leq \frac{y-x}{8} \biggl[ \biggl\vert g^{\prime }\biggl(\frac{5x+y}{6} \biggr) \biggr\vert + \biggl\vert g^{\prime } \biggl( \frac{x+5y}{6} \biggr) \biggr\vert \biggr]. $$
(4)
The goal of this article is to establish Hermite–Hadamard type inequalities for the Riemann–Liouville fractional integral using convexity as well as concavity, for functions whose absolute values of the first derivative are convex. Here we will derive a general integral inequality for the Riemann–Liouville fractional integral.

2 Main results

Before going on our main result first we prove the following integral inequality.
Lemma 1
Let \(I\subset \mathbb{R}\) be an open interval, \(a,b\in I\) with \(a< b\) and \(f:[a,b]\rightarrow \mathbb{R}\) be a differentiable function such that \(f^{\prime }\) is integrable and \(0< \alpha \leq 1\) on \((a,b)\) with \(a< b\). If \(|f^{\prime }|\) is convex on \([a,b]\), then we have the following inequality:
$$\begin{aligned}& \Biggl[ \biggl( \frac{ ( b-a ) ^{\alpha }- ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( b ) }{2}+ \biggl( \frac{ ( b-a ) ^{\alpha }- ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( a ) }{2} \\& \quad {}-\frac{\varGamma (\alpha +1)}{2(b-a)^{\alpha }} \bigl[ J_{a^{+}}^{ \alpha }f(b)+J_{b^{-}}^{\alpha }f(a) \bigr] =\frac{1}{2} \sum_{k=1}^{4}I_{1k} \Biggr], \end{aligned}$$
where
$$\begin{aligned}& I_{11}=\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \int _{0}^{1} \bigl( t^{\alpha }-1 \bigr) f^{\prime }\bigl(tx+(1-t)a\bigr)\,dt , \\& I_{12}=\frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \int _{0}^{1} \bigl( 1-t^{\alpha } \bigr) f^{\prime }\bigl(tx+(1-t)b\bigr)\,dt , \\& I_{13}=\frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \int _{0}^{1} \biggl[ \biggl( \frac{a-b}{x-b}-t \biggr) ^{ \alpha }- \biggl( \frac{a-x}{x-b} \biggr) ^{\alpha } \biggr] f^{\prime }\bigl(tx+(1-t)b\bigr)\,dt , \\& I_{14}=\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \int _{0}^{1} \biggl[ \biggl( \frac{b-x}{x-a} \biggr) ^{ \alpha }- \biggl( \frac{b-a}{x-a}-t \biggr) ^{\alpha } \biggr] f^{ \prime }\bigl(tx+(1-t)a\bigr)\,dt . \end{aligned}$$
Proof
Integrating by parts
$$\begin{aligned}& I_{11}=\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \int _{0}^{1} \bigl( t^{\alpha }-1 \bigr) f^{\prime }\bigl(tx+(1-t)a\bigr)\,dt \\& \hphantom{I_{11}}=\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{ \alpha }}\biggl\{ \frac{ ( t^{\alpha }-1 ) f(tx+(1-t)a)}{x-a}\bigg|_{0}^{1} \\& \hphantom{I_{11}={}}{}+\frac{\alpha }{x-a} \int _{0}^{1} \bigl( t^{\alpha -1} \bigr) f \bigl(tx+(1-t)a\bigr)\,dt\biggr\} \\& \hphantom{I_{11}}=\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{ \alpha }} \biggl\{ \frac{f ( a ) }{x-a}-\frac{\alpha }{x-a} \int _{a}^{x}\frac{ ( u-a ) ^{\alpha -1}}{ ( x-a ) ^{\alpha -1}}\cdot \frac{f(u)\,du}{ ( x-a ) } \biggr\} \\& \hphantom{I_{11}} =\frac{f ( a ) ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }}- \frac{\alpha }{ ( b-a ) ^{\alpha }} \int _{a}^{x} ( u-a ) ^{\alpha -1}f(u)\,du, \\& I_{13}=\frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \int _{0}^{1} \biggl[ \biggl( \frac{a-b}{x-b}-t \biggr) ^{ \alpha }- \biggl( \frac{a-x}{x-b} \biggr) ^{\alpha } \biggr] f^{\prime }\bigl(tx+(1-t)b\bigr)\,dt \\& \hphantom{I_{13}}=\frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }}\frac{ [ ( \frac{a-b}{x-b}-t ) ^{\alpha }- ( \frac{a-x}{x-b} ) ^{\alpha } ] f(tx+(1-t)b)\,dt}{x-b}\bigg|_{0} ^{1} \\& \hphantom{I_{13}={}}{} - \int _{0}^{1}-\alpha \biggl( \frac{a-b}{x-b}-t \biggr) ^{\alpha -1} \frac{f(tx+(1-t)b)\,dt}{x-b} \\& \hphantom{I_{13}} =\frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \biggl[ \biggl( \frac{a-b}{x-b}-t \biggr) ^{\alpha }- \biggl( \frac{a-x}{b-x} \biggr) ^{\alpha } \biggr] \frac{f ( b ) }{b-x} \\& \hphantom{I_{13}={}}{} +\frac{-\alpha }{b-x} \int _{b}^{x}\frac{ ( u-a ) ^{ \alpha -1}}{ ( b-x ) ^{\alpha -1}}\cdot \frac{f(u)\,du}{ ( b-x ) } \\& \hphantom{I_{13}} =\frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \biggl\{ \frac{ ( b-a ) ^{\alpha }- ( x-a ) ^{\alpha }}{ ( b-x ) ^{\alpha +1}}f ( b ) - \frac{ \alpha }{ ( b-x ) ^{\alpha +1}} \int _{x}^{b} ( u-a ) ^{\alpha -1}f(u)\,du \biggr\} . \end{aligned}$$
Analogously
$$\begin{aligned}& I_{12}=\frac{f ( b ) ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }}-\frac{\alpha }{ ( b-a ) ^{\alpha }} \int _{b}^{x} ( b-u ) ^{\alpha -1}f(u)\,du , \\& I_{14}=\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \biggl\{ \frac{- ( b-x ) ^{\alpha }+ ( b-a ) ^{\alpha }}{ ( x-a ) ^{\alpha +1}}f ( a ) - \frac{\alpha }{ ( x-a ) ^{\alpha +1}} \int _{a} ^{x} ( b-u ) ^{\alpha -1}f(u)\,du \biggr\} . \end{aligned}$$
Adding the above equalities, we get
$$\begin{aligned}& I_{11}+I_{13}=\frac{ ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }}f ( a ) + \biggl( 1- \frac{ ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) f ( b ) -\frac{\varGamma (\alpha +1)}{(b-a)^{\alpha }}J_{b^{-}}^{\alpha }f(a) , \\& I_{12}+I_{14}=\frac{ ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }}f ( b ) + \biggl( 1- \frac{ ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) f ( a ) -\frac{\varGamma (\alpha +1)}{(b-a)^{\alpha }}J_{a^{+}}^{\alpha }f(b) . \end{aligned}$$
The proof is completed. □
Theorem 4
Let \(I\subset \mathbb{R}\) be an open interval, \(a,b\in I\) with \(a< b\) and \(f:[a,b]\rightarrow \mathbb{R}\) be a differentiable function such that \(f^{\prime }\) is integrable and \(0<\alpha \leq 1\) on \((a,b)\) with \(a< b\). If \(|f^{\prime }|\) is convex on \([a,b]\), then the following inequality for Riemann–Liouville fractional integrals holds:
$$\begin{aligned}& \biggl[ \biggl( \frac{ ( b-a ) ^{\alpha }- ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( b ) }{2}+ \biggl( \frac{ ( b-a ) ^{\alpha }- ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( a ) }{2} \\& \qquad {} -\frac{\varGamma (\alpha +1)}{2(b-a)^{\alpha }} \bigl[ J_{a ^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a) \bigr] \biggr] \\& \quad \leq \frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha +1}} \bigl[ A \bigl\vert f^{\prime }(x) \bigr\vert +B \bigl\vert f^{\prime }(a) \bigr\vert \bigr] + \frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{\alpha +1}} \bigl[ A \bigl\vert f^{\prime }(x) \bigr\vert +B \bigl\vert f^{\prime }(b) \bigr\vert \bigr] \\& \qquad {}+\frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{ \alpha +1}} \bigl[ C \bigl\vert f^{\prime }(x) \bigr\vert +D \bigl\vert f^{\prime }(b) \bigr\vert \bigr] + \frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha +1}} \bigl[ E \bigl\vert f^{\prime }(x) \bigr\vert +F \bigl\vert f^{\prime }(a) \bigr\vert \bigr], \end{aligned}$$
(5)
where
$$\begin{aligned}& A = \int _{0}^{1} \bigl\vert 1-t^{\alpha } \bigr\vert t\,dt=\frac{ \alpha }{2 ( \alpha +2 ) }, \\& B = \int _{0}^{1} \bigl\vert 1-t^{\alpha } \bigr\vert ( 1-t ) \,dt=\frac{\alpha }{\alpha +1}-\frac{\alpha }{2 ( \alpha +2 ) }= \frac{\alpha (\alpha +3)}{2(\alpha +1)(\alpha +2)}, \\& \begin{aligned} C &= \int _{0}^{1}t \biggl\vert \biggl( \frac{a-b}{x-b}-t\biggr)^{\alpha }-\biggl( \frac{a-x}{x-b} \biggr)^{\alpha } \biggr\vert \,dt \\ &=-\frac{1}{ ( \alpha +1 ) ( \alpha +2 ) }\biggl( \frac{a-x}{x-b}\biggr)^{\alpha +2}+ \frac{1}{2}\biggl(\frac{a-x}{x-b}\biggr) \\ &\quad {}+\frac{1}{ ( \alpha +1 ) ( \alpha +2 ) }\biggl( \frac{a-b}{x-b}\biggr)^{\alpha +2}- \frac{1}{\alpha +1}\biggl(\frac{a-x}{x-b}\biggr)^{ \alpha +1}-\biggl( \frac{a-x}{x-b}\biggr)^{\alpha }, \end{aligned} \\& \begin{aligned} D &= \int _{0}^{1} \biggl\vert \biggl( \frac{a-b}{x-b}-t\biggr)^{\alpha }-\biggl( \frac{a-x}{x-b} \biggr)^{\alpha } \biggr\vert ( 1-t ) \,dt \\ &=\frac{1}{ ( \alpha +1 ) }\biggl(\frac{a-b}{x-b}\biggr)^{\alpha +1}+ \frac{1}{ ( \alpha +1 ) ( \alpha +2 ) }\biggl(\frac{a-x}{x-b}\biggr)^{ \alpha +2}- \frac{1}{2}\biggl(\frac{a-x}{x-b}\biggr) \\ &\quad {}-\frac{1}{ ( \alpha +1 ) ( \alpha +2 ) }\biggl( \frac{a-b}{x-b}\biggr)^{\alpha +2}. \end{aligned} \end{aligned}$$
Proof
Here, utilizing the properties of the modulus in Lemma 1 and convexity of \(|f^{\prime }|\), we have
$$\begin{aligned}& |K_{1}| =\frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0} ^{1} \bigl( t^{\alpha }-1 \bigr) f^{\prime }\bigl(tx+(1-t)a\bigr)\,dt, \\& \begin{aligned} |K_{1}| & \leq \frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \bigl\vert \bigl( 1-t^{\alpha } \bigr) \bigr\vert \bigl\vert f^{ \prime }\bigl(tx+(1-t)a\bigr) \bigr\vert \,dt \\ & \leq \frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \bigl\vert \bigl( 1-t^{\alpha } \bigr) \bigr\vert \bigl\{ t \bigl\vert f^{\prime }(x) \bigr\vert +(1-t) \bigl\vert f^{\prime }(a) \bigr\vert \bigr\} \,dt, \end{aligned} \\& |K_{1}| =\frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} \bigl\{ A \bigl\vert f^{\prime }(x) \bigr\vert +B \bigl\vert f^{\prime }(a) \bigr\vert \bigr\} , \end{aligned}$$
and analogously
$$\begin{aligned}& |K_{2}| =\frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \bigl( t^{\alpha }-1 \bigr) f^{\prime }\bigl(tx+(1-t)b\bigr)\,dt, \\& \begin{aligned} \vert K_{2} \vert & \leq \frac{(b-x)^{\alpha +1}}{(b-a)^{ \alpha }} \int _{0}^{1} \bigl\vert 1-t^{\alpha } \bigr\vert \bigl\vert f^{\prime }\bigl(tx+(1-t)b\bigr) \bigr\vert \,dt \\ & \leq \frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \bigl\vert \bigl( 1-t^{\alpha } \bigr) \bigr\vert \bigl\{ t \bigl\vert f^{\prime }(x) \bigr\vert {+}(1-t) \bigl\vert f^{\prime }(b) \bigr\vert \bigr\} \,dt, \end{aligned} \\& \vert K_{2} \vert =\frac{(b-x)^{\alpha +1}}{(b-a)^{ \alpha }} \bigl\{ A \bigl\vert f^{\prime }(x) \bigr\vert +B \bigl\vert f ^{\prime }(b) \bigr\vert \bigr\} , \end{aligned}$$
using the convexity on \(|f^{\prime }|\) and the fact that, for \(\alpha \in (0,1]\) and \(\forall t\in {}[ 0,1]\),
$$\begin{aligned}& \begin{aligned} |K_{3}| &\leq \frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \biggl\vert \biggl( \frac{a-b}{x-b}-t\biggr)^{\alpha }-\biggl(\frac{a-x}{x-b} \biggr)^{ \alpha } \biggr\vert \bigl\vert f^{\prime }\bigl(tx+(1-t)b \bigr) \bigr\vert \,dt \\ &\leq \frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \biggl\vert \biggl( \frac{a-b}{x-b}-t\biggr)^{\alpha }-\biggl(\frac{a-x}{x-b} \biggr)^{\alpha } \biggr\vert \bigl\{ t \bigl\vert f^{\prime }(x) \bigr\vert +(1-t) \bigl\vert f ^{\prime }(b) \bigr\vert \bigr\} \,dt, \end{aligned} \\& \vert K_{3} \vert =\frac{(b-x)^{\alpha +1}}{(b-a)^{ \alpha }} \bigl\{ C \bigl\vert f^{\prime }(x) \bigr\vert +D \bigl\vert f ^{\prime }(b) \bigr\vert \bigr\} , \end{aligned}$$
and analogously
$$\begin{aligned} |K_{4}| \leq &\frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \biggl\vert \biggl( \frac{b-x}{x-a} \biggr) ^{\alpha }- \biggl( \frac{b-a}{x-a}-t \biggr) ^{\alpha } \biggr\vert \bigl\vert f^{\prime }\bigl(tx+(1-t)a\bigr) \bigr\vert \,dt \\ \leq &\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \int _{0}^{1} \biggl\vert \biggl( \frac{b-x}{x-a} \biggr) ^{\alpha }- \biggl( \frac{b-a}{x-a}-t \biggr) ^{\alpha } \biggr\vert \bigl\{ t \bigl\vert f^{\prime }(x) \bigr\vert +(1-t) \bigl\vert f ^{\prime }(a) \bigr\vert \bigr\} \,dt \\ \leq &\frac{ ( x-{a} ) ^{\alpha +1}}{ ( b-a ) ^{\alpha }} \bigl\{ E \bigl\vert f^{\prime }(x) \bigr\vert +F \bigl\vert f ^{\prime }(a) \bigr\vert \bigr\} . \end{aligned}$$
The proof is completed. □
Remark 1
On letting \(\alpha =1\), \(x=\frac{a+b}{2}\) in Theorem 4, inequality (5) reduces to inequality (1).
Theorem 5
Let \(I\subset \mathbb{R}\) be an open interval, \(a,b\in I\) with \(a< b\) and \(f:[a,b]\rightarrow \mathbb{R}\) be a differentiable function such that \(f^{\prime }\) is integrable and \(0<\alpha \leq 1\) on \((a,b)\) with \(a< b\). If \(|f^{\prime }|^{q}\) is convex on \([a,b]\), \(q\geq 1\) then the following inequality holds:
$$\begin{aligned}& \biggl[ \biggl( \frac{ ( b-a ) ^{\alpha }- ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( b ) }{2}+ \biggl( \frac{ ( b-a ) ^{\alpha }- ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( a ) }{2} \\& \qquad {} + -\frac{\varGamma (\alpha +1)}{2(b-a)^{\alpha }} \bigl[ J_{a ^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a) \bigr] \biggr] \\& \quad \leq \biggl[ \frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} ( \gamma _{1} ) ^{1-1/q} \bigl( A \bigl\vert f^{\prime }(x) \bigr\vert ^{q}+B \bigl\vert f^{ \prime }(a) \bigr\vert ^{q} \bigr) ^{1/q} \\& \qquad {}+ \frac{(b-x)^{\alpha +1}}{(b-a)^{ \alpha }} ( \gamma _{2} ) ^{1-1/q} \bigl( A \bigl\vert f^{\prime }(x) \bigr\vert ^{q}+B \bigl\vert f ^{\prime }(b) \bigr\vert ^{q} \bigr) ^{1/q} \\& \qquad {}+ \frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} ( \gamma _{3} ) ^{1-1/q} \bigl( C \bigl\vert f^{\prime }(x) \bigr\vert ^{q}+D \bigl\vert f^{\prime }(b) \bigr\vert ^{q} \bigr) ^{1/q} \\& \qquad {}+ \frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} ( \gamma _{4} ) ^{1-1/q} \bigl( E \bigl\vert f^{\prime }(x) \bigr\vert ^{q}+F \bigl\vert f ^{\prime }(a) \bigr\vert ^{q} \bigr) ^{1/q} \biggr], \end{aligned}$$
(6)
where
$$\begin{aligned}& \begin{aligned} E &= \int _{0}^{1}t \biggl\vert \biggl( \frac{b-a}{x-a}-t\biggr)^{\alpha }-\biggl( \frac{b-x}{x-a} \biggr)^{\alpha } \biggr\vert \,dt \\ &=\biggl(\frac{b-x}{2 ( x-a ) }\biggr)-\frac{1}{ ( \alpha +1 ) }\biggl(\frac{b-x}{x-a} \biggr)^{\alpha +1}-\frac{b-x}{(x-a)} \\ &\quad {}-\frac{1}{ ( \alpha +1 ) ( \alpha +2 ) }\biggl( \frac{b-x}{x-a}\biggr)^{\alpha +2}+ \frac{1}{ ( \alpha +1 ) ( \alpha +2 ) }\biggl(\frac{b-a}{x-a}\biggr)^{\alpha +2} , \end{aligned} \\& \begin{aligned} F &= \int _{0}^{1} \biggl\vert \biggl( \frac{b-a}{x-a}-t\biggr)^{\alpha }-\biggl( \frac{b-x}{x-a} \biggr)^{\alpha } \biggr\vert ( 1-t ) \,dt \\ &=\frac{1}{ ( \alpha +1 ) }\biggl(\frac{b-a}{x-a}\biggr)^{\alpha +2}- \frac{b-x}{2(x-a)}+\frac{1}{ ( \alpha +1 ) ( \alpha +2 ) }\biggl(\frac{b-x}{x-a} \biggr)^{\alpha +2}-E, \end{aligned} \\& \gamma _{1} = \int _{0}^{1} \bigl\vert t^{\alpha }-1 \bigr\vert \,dt=\frac{ \alpha }{ ( \alpha +1 ) }, \\& \gamma _{2} = \int _{0}^{1} \bigl\vert 1-t^{\alpha } \bigr\vert \,dt=\frac{ \alpha }{ ( \alpha +1 ) }, \\& \begin{aligned} \gamma _{3} &= \int _{0}^{1} \biggl\vert \biggl( \frac{a-b}{x-b}-t\biggr)^{\alpha }-\biggl( \frac{a-x}{x-b} \biggr)^{\alpha } \biggr\vert \,dt \\ &=-\frac{1}{ ( \alpha +1 ) }\biggl(\frac{a-x}{x-b}\biggr)^{\alpha +1}-\biggl( \frac{a-x}{x-b}\biggr)^{\alpha }+\frac{1}{ ( \alpha +1 ) }\biggl( \frac{a-b}{x-b}\biggr)^{\alpha } , \end{aligned} \\& \begin{aligned} \gamma _{4} &= \int _{0}^{1} \biggl\vert \biggl( \frac{b-x}{x-a}-t\biggr)^{\alpha }-\biggl( \frac{b-x}{x-a} \biggr)^{\alpha } \biggr\vert \,dt \\ &=\biggl(\frac{b-x}{x-a}\biggr)^{\alpha }+\frac{1}{ ( \alpha +1 ) }\biggl( \frac{b-x}{x-a}\biggr)^{\alpha +1}-\frac{1}{ ( \alpha +1 ) }\biggl( \frac{b-a}{x-a}\biggr)^{\alpha +1}. \end{aligned} \end{aligned}$$
Proof
By using the properties of the modulus in Lemma 1, we have
$$\begin{aligned}& \biggl\vert \biggl[ \biggl( \frac{ ( b-a ) ^{\alpha }- ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( b ) }{2}+ \biggl( \frac{ ( b-a ) ^{ \alpha }- ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( a ) }{2} \\& \quad {}+-\frac{\varGamma (\alpha +1)}{2(b-a)^{\alpha }} \bigl[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a) \bigr] \biggr] \biggr\vert \leq \sum_{k=1}^{4}|J_{k}| \end{aligned}$$
and using convexity of \(|f^{\prime }|\), we have
$$\begin{aligned} |J_{1}| & \leq \frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \bigl( 1-t^{\alpha } \bigr) \bigl\vert f^{\prime }\bigl(tx+(1-t)a\bigr) \bigr\vert \,dt \\ & \leq \frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} \biggl( \int _{0}^{1} \bigl( 1-t^{\alpha } \bigr) \,dt \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{1} \bigl( 1-t^{\alpha } \bigr) \bigl\vert f^{\prime }\bigl(tx+(1-t)a\bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ & =\frac{(x-a)^{\alpha +1}}{(b-a)^{\alpha }} ( \gamma _{1} ) ^{{1-\frac{1}{q}}} \bigl[ A \bigl\vert f^{\prime }(x) \bigr\vert ^{q}+B \bigl\vert f^{\prime } ( a ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} \end{aligned}$$
and analogously
$$\begin{aligned} |J_{3}| \leq& \frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \biggl\vert \biggl( \frac{a-b}{x-b}-t\biggr)^{\alpha }-\biggl(\frac{a-x}{x-b} \biggr)^{\alpha } \biggr\vert \bigl\vert f ^{\prime }\bigl(tx+(1-t)b \bigr) \bigr\vert \,dt \\ \leq& \frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{a-b}{x-b}-t\biggr)^{\alpha }-\biggl(\frac{a-x}{x-b} \biggr)^{\alpha } \biggr\vert \,dt \biggr) ^{1-\frac{1}{q}} \\ &{} \times \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{a-b}{x-b}-t\biggr)^{\alpha }-\biggl(\frac{a-x}{x-b} \biggr)^{\alpha } \biggr\vert \bigl\vert f^{\prime }\bigl(tx+(1-t)b \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ =&\frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} ( \gamma _{3} ) ^{{1-\frac{1}{q}}} \bigl[ C \bigl\vert f^{\prime }(x) \bigr\vert ^{q}+D \bigl\vert f^{\prime } ( b ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}}, \end{aligned}$$
using the convexity and the fact that, for \(\alpha \in (0,1]\) and \(\forall t\in {}[ 0,1]\),
$$ |J_{2}|\leq \frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} ( \gamma _{2} ) ^{{1-\frac{1}{q}}} \bigl[ A \bigl\vert f^{\prime }(x) \bigr\vert ^{q}+B \bigl\vert f^{\prime } ( b ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} $$
and similarly
$$\begin{aligned} |J_{4}| \leq &\frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} \int _{0}^{1} \biggl\vert \biggl( \frac{b-a}{x-a}-t\biggr)^{\alpha }-\biggl(\frac{b-x}{x-a} \biggr)^{\alpha } \biggr\vert \bigl|f ^{\prime }\bigl(tx+(1-t)a\bigr)\bigr|\,dt \\ \leq& \frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{b-a}{x-a}-t\biggr)^{\alpha }-\biggl(\frac{b-x}{x-a} \biggr)^{\alpha } \biggr\vert \,dt \biggr) ^{1-\frac{1}{q}} \\ &{} \times \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{b-a}{x-a}-t\biggr)^{\alpha }-\biggl(\frac{b-x}{x-a} \biggr)^{\alpha } \biggr\vert \bigl\vert f^{\prime }\bigl(tx+(1-t)a \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ =&\frac{(b-x)^{\alpha +1}}{(b-a)^{\alpha }} ( \gamma _{4} ) ^{{1-\frac{1}{q}}} \bigl[ E \bigl\vert f^{\prime }(x) \bigr\vert ^{q}+F \bigl\vert f^{\prime } ( a ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}}. \end{aligned}$$
The proof is completed. □
Corollary 2
On letting \(\alpha =1\), \(x=\frac{a+b}{2}\) and \(\vert f ^{\prime }(a) \vert = \vert f^{\prime } ( b ) \vert \leq M\) in Theorem 5, inequality (6) reduces to the inequality
$$ \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int _{a}^{b}f(x)\,dx \biggr\vert \leq \frac{M}{4} ( b-a ). $$
(7)
Remark 2
The obtained inequality (7) is an improvement of the inequality as in (2).
In the following, we obtain an estimate of the Hermite–Hadamard inequality for concave functions.
Theorem 6
Let \(f:[a,b]\rightarrow \mathbb{R}\) be a differentiable function on \((a,b)\) such that \(f^{\prime }\in L_{1}[a,b]\). If \(|f^{\prime }|^{q}\) is concave on \([a,b]\), for some fixed \(p>1\) with \(q=\frac{p}{p-1}\), the following inequality for fractional integrals holds:
$$\begin{aligned}& \biggl\vert \biggl[ \biggl( \frac{ ( b-a ) ^{\alpha }- ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( b ) }{2}+ \biggl( \frac{ ( b-a ) ^{ \alpha }- ( b-x ) ^{\alpha }}{ ( b-a ) ^{\alpha }}+\frac{ ( x-a ) ^{\alpha }}{ ( b-a ) ^{\alpha }} \biggr) \frac{f ( a ) }{2} \\& \qquad {}+ -\frac{\varGamma (\alpha +1)}{2(b-a)^{\alpha }} \bigl[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a) \bigr]\biggr] \biggr\vert \\& \quad \leq \biggl[ \biggl\{ \gamma _{1} \biggl\vert f^{\prime } \biggl( ( \alpha +1) \biggl\{ \frac{Ax+Bb}{\alpha } \biggr\} \biggr) \biggr\vert + \gamma _{2} \biggl\vert f^{\prime } \biggl( (\alpha +1) \biggl\{ \frac{Ax+Bb}{ \alpha } \biggr\} \biggr) \biggr\vert \biggr\} \\& \qquad {} +\gamma _{3} \biggl\vert f^{\prime } \biggl( (\alpha +1) \biggl\{ \frac{Cx+Db}{\alpha } \biggr\} \biggr) \biggr\vert +\gamma _{3} \biggl\vert f ^{\prime }(\alpha +1) \biggl\{ \frac{Ex+Fa}{\alpha } \biggr\} \biggr\vert \biggr] . \end{aligned}$$
(8)
Proof
Using the concavity of \(|f^{\prime }|^{q}\) and the power-mean inequality, we obtain
$$\begin{aligned} \bigl\vert f^{\prime }\bigl(tx+(1-t)y\bigr) \bigr\vert ^{q} & >t \bigl\vert f^{\prime } ( x ) \bigr\vert ^{q}+(1-t) \bigl\vert f ^{\prime } ( y ) \bigr\vert ^{q} \\ & \geq t \bigl\vert f^{\prime } ( x ) \bigr\vert ^{q}+(1-t) \bigl\vert f^{\prime } ( y ) \bigr\vert ^{q}. \end{aligned}$$
Hence
$$ \bigl\vert f^{\prime }\bigl(tx+(1-t)y\bigr) \bigr\vert \geq t \bigl\vert f^{\prime }(x) \bigr\vert +(1-t) \bigl\vert f^{\prime }(y) \bigr\vert , $$
so \(|f^{\prime }|\) is also concave. By the Jensen integral inequality, we have
$$\begin{aligned} |I_{1}| \leq &\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha +1}} \biggl( \int _{0}^{1} \bigl\vert 1-t^{\alpha } \bigr\vert \,dt \biggr) \biggl\vert f^{\prime } \biggl( \frac{\int _{0}^{1} \vert ( 1-t^{\alpha } ) \vert [ f^{\prime }(tx+(1-t)a) ] \,dt}{\int _{0}^{1} \vert 1-t^{ \alpha } \vert \,dt} \biggr) \biggr\vert \\ =&\frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{ \alpha +1}} ( \gamma _{1} ) \biggl\vert f^{\prime } \biggl( \frac{Ax+Ba}{ \gamma _{1}} \biggr) \biggr\vert \end{aligned}$$
and similarly
$$\begin{aligned}& |I_{2}|\leq \frac{ ( b-x ) ^{\alpha +1}}{ ( b-a ) ^{\alpha +1}} ( \gamma _{2} ) \biggl\vert f^{\prime } \biggl( \frac{Ax+Bb}{\gamma _{2}} \biggr) \biggr\vert , \\& \begin{aligned} |I_{3}| &\leq \frac{(b-x)^{{\alpha +1}}}{(b-a)^{\alpha }} \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{a-b}{x-b}-t \biggr) ^{\alpha }- \biggl( \frac{a-x}{x-b} \biggr) ^{\alpha } \biggr\vert \biggr) \\ &\quad {}\times \biggl\vert f^{\prime } \biggl( \frac{ ( \int _{0}^{1} \vert ( \frac{a-b}{x-b}-t ) ^{\alpha }- ( \frac{a- {i}x}{x-b} ) ^{\alpha } \vert ) [ f^{\prime }(tx+(1-t)b) ] \,dt}{\int _{0}^{1} \vert ( \frac{a-b}{x-b}-t ) ^{\alpha }- ( \frac{a-x}{x-b} ) ^{\alpha } \vert \,dt} \biggr) \biggr\vert \\ &\leq (\gamma _{3}) \biggl\vert f^{\prime } \biggl( \frac{Cx+Db}{\gamma _{3}} \biggr) \biggr\vert , \end{aligned} \end{aligned}$$
and
$$\begin{aligned}& \begin{aligned} |I_{4}| &\leq \frac{ ( x-a ) ^{\alpha +1}}{ ( b-a ) ^{\alpha +1}} \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{b-x}{x-a} \biggr) ^{\alpha }- \biggl( \frac{b-a}{x-a}-t \biggr) ^{\alpha } \biggr\vert \biggr) \\ &\quad {}\times \biggl\vert f^{\prime } \biggl( \frac{\int _{0}^{1} \vert ( \frac{b-x}{x-a} ) ^{ \alpha }- ( \frac{b-a}{x-a}-t ) ^{\alpha } \vert [ f^{\prime }(tx+(1-t)a) ] \,dt}{ ( \int _{0}^{1} \vert ( \frac{b-x}{x-a} ) ^{\alpha }- ( \frac{b-a}{x-a}-t ) ^{\alpha } \vert ) \,dt} \biggr) \biggr\vert , \end{aligned} \\& |I_{4}| \leq (\gamma _{4}) \biggl\vert f^{\prime } \biggl( \frac{Ex+Fb}{ \gamma _{4}} \biggr) \biggr\vert . \end{aligned}$$
The proof is completed. □
Remark 3
On letting \(\alpha =1\), \(x=\frac{a+b}{2}\) in Theorem 6, inequality (8) reduces to inequality (4).

3 Conclusion

In this article, based on a more general inequality, the authors have determined a few inequalities of Hermite–Hadamard type for functions that possess a first derivative on the interior of an interval of real numbers, by utilizing the Hölder inequality and the assumptions that the mappings \(\vert ( f^{\prime } ) \vert ^{q} \), \(q\geq 1\) are convex and concave. The outcomes exhibited here surely give refinements of those outcomes demonstrated in [1, 2] and [3], and we can get many intriguing results for \(\alpha = 1\) and \(x= \frac{a+b}{2}\).

Acknowledgements

The first author is grateful to Prof. Dr. S.M. Junaid Zaidi, Executive Director and Prof. Dr. Raheel Qamar Rector, COMSATS University Islamabad Sahiwal Campus, Pakistan, for providing excellent research facilities. Fifth and seventh authors are grateful to Prof. Dr. K.T. Ooi, HOD of MAE and Dr. K.C. Leong, Asso. Prof. MAE, Nanyang Technological University Singapore for providing excellent research facilities for this research work too.

Competing interests

The authors declare to have no conflict of interest.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Dragomir, S.-S., Agarwal, R.-P.: Two inequalities for differentiable mapping and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998) MathSciNetCrossRef Dragomir, S.-S., Agarwal, R.-P.: Two inequalities for differentiable mapping and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998) MathSciNetCrossRef
2.
go back to reference Dragomir, S.-S., Chob, Y.-J., Kimc, S.-S.: Inequalities of Hadamard type for Lipschitzian mapping and their applications. J. Math. Anal. Appl. 245(2), 489–501 (2000) MathSciNetCrossRef Dragomir, S.-S., Chob, Y.-J., Kimc, S.-S.: Inequalities of Hadamard type for Lipschitzian mapping and their applications. J. Math. Anal. Appl. 245(2), 489–501 (2000) MathSciNetCrossRef
3.
go back to reference Yang, G.-S., Hwang, D.-Y., Tseng, K.-L.: Some inequalities for differentiable convex and concave mapping. Comput. Math. Appl. 47(2–3), 207–216 (2004) MathSciNetCrossRef Yang, G.-S., Hwang, D.-Y., Tseng, K.-L.: Some inequalities for differentiable convex and concave mapping. Comput. Math. Appl. 47(2–3), 207–216 (2004) MathSciNetCrossRef
5.
go back to reference Kilbas, A.-A., Srivastava, H.-M., Trujillo, J.-J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) CrossRef Kilbas, A.-A., Srivastava, H.-M., Trujillo, J.-J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) CrossRef
7.
go back to reference Samet, B.: On an implicit convexity concept and some integral inequalities. J. Inequal. Appl. 2016, Article ID 308 (2016) MathSciNetCrossRef Samet, B.: On an implicit convexity concept and some integral inequalities. J. Inequal. Appl. 2016, Article ID 308 (2016) MathSciNetCrossRef
8.
go back to reference Almeida, R.-A.: Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017) MathSciNetCrossRef Almeida, R.-A.: Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017) MathSciNetCrossRef
9.
go back to reference Rajba, T.: On strong delta-convexity and Hermite–Hadamard type inequalities for delta-convex functions of higher order. Math. Inequal. Appl. 18(1), 267–293 (2015) MathSciNetMATH Rajba, T.: On strong delta-convexity and Hermite–Hadamard type inequalities for delta-convex functions of higher order. Math. Inequal. Appl. 18(1), 267–293 (2015) MathSciNetMATH
10.
go back to reference Dragomir, S.-S., Bhatti, M.-I., Iqbal, M., Muddassar, M.: Some new fractional integral Hermite–Hadamard type inequalities. J. Comput. Anal. Appl. 18(4), 655–661 (2015) MathSciNetMATH Dragomir, S.-S., Bhatti, M.-I., Iqbal, M., Muddassar, M.: Some new fractional integral Hermite–Hadamard type inequalities. J. Comput. Anal. Appl. 18(4), 655–661 (2015) MathSciNetMATH
11.
go back to reference Iqbal, M., Qaisar, S., Muddassar, M.: A short note on integral inequality of type Hermite–Hadamard through convexity. J. Comput. Anal. Appl. 21(5), 946–953 (2016) MathSciNetMATH Iqbal, M., Qaisar, S., Muddassar, M.: A short note on integral inequality of type Hermite–Hadamard through convexity. J. Comput. Anal. Appl. 21(5), 946–953 (2016) MathSciNetMATH
12.
go back to reference Bhatti, M.-I., Iqbal, M., Dragomir, S.-S.: Some new fractional integral inequalities Hermite–Hadamard type inequalities. J. Comput. Anal. Appl. 16(4), 643–653 (2015) MATH Bhatti, M.-I., Iqbal, M., Dragomir, S.-S.: Some new fractional integral inequalities Hermite–Hadamard type inequalities. J. Comput. Anal. Appl. 16(4), 643–653 (2015) MATH
13.
go back to reference Iqbal, M., Qaisar, S., Hussain, S.: On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 23(6), 1137–1145 (2016) MathSciNet Iqbal, M., Qaisar, S., Hussain, S.: On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 23(6), 1137–1145 (2016) MathSciNet
14.
go back to reference Qaisar, S., Iqbal, M., Muddassar, M.: New Hermite–Hadamard’s inequalities for preinvex function via fractional integrals. J. Comput. Anal. Appl. 20(7), 1318–1328 (2016) MathSciNetMATH Qaisar, S., Iqbal, M., Muddassar, M.: New Hermite–Hadamard’s inequalities for preinvex function via fractional integrals. J. Comput. Anal. Appl. 20(7), 1318–1328 (2016) MathSciNetMATH
15.
go back to reference Sarikaya, M.-Z., Budak, H.: Generalized Hermite–Hadamard type integral inequalities for fractional integrals. Filomat 30(5), 1315–1326 (2016) MathSciNetCrossRef Sarikaya, M.-Z., Budak, H.: Generalized Hermite–Hadamard type integral inequalities for fractional integrals. Filomat 30(5), 1315–1326 (2016) MathSciNetCrossRef
16.
go back to reference Qaisar, S., Ahmad, F., Dragomir, S.-S., Iqbal, M.: New Hermite–Hadamard’s inequalities via fractional integrals whose absolute values of second derivatives is P-convex and related fractional inequalities. J. Math. Inequal. 12(3), 655–664 (2018) MathSciNetCrossRef Qaisar, S., Ahmad, F., Dragomir, S.-S., Iqbal, M.: New Hermite–Hadamard’s inequalities via fractional integrals whose absolute values of second derivatives is P-convex and related fractional inequalities. J. Math. Inequal. 12(3), 655–664 (2018) MathSciNetCrossRef
17.
go back to reference Qaisar, S., Iqbal, M., Hussain, S., Butt, S.-I., Meraj, M.-A.: New inequalities on Hermite–Hadamard utilizing fractional integrals. Kragujev. J. Math. 42(1), 15–27 (2018) MathSciNetCrossRef Qaisar, S., Iqbal, M., Hussain, S., Butt, S.-I., Meraj, M.-A.: New inequalities on Hermite–Hadamard utilizing fractional integrals. Kragujev. J. Math. 42(1), 15–27 (2018) MathSciNetCrossRef
18.
go back to reference Sarikaya, M.-Z., Aktan, N.: On the generalization of some integral inequalities and their applications. Math. Comput. Model. 54(9), 2175–2182 (2011) MathSciNetCrossRef Sarikaya, M.-Z., Aktan, N.: On the generalization of some integral inequalities and their applications. Math. Comput. Model. 54(9), 2175–2182 (2011) MathSciNetCrossRef
Metadata
Title
Some fractional integral inequalities of type Hermite–Hadamard through convexity
Authors
Shahid Qaisar
Jamshed Nasir
Saad Ihsan Butt
Asma Asma
Farooq Ahmad
Muhammad Iqbal
Sajjad Hussain
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2019
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2054-2

Other articles of this Issue 1/2019

Journal of Inequalities and Applications 1/2019 Go to the issue

Premium Partner