Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2015

Open Access 01-12-2015 | Research

Some inequalities related to two expansions of \((1+1/x)^{x}\)

Authors: Bijun Ren, Xiao Li

Published in: Journal of Inequalities and Applications | Issue 1/2015

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

We prove the following theorem: Let
$$\begin{aligned}& \biggl(1+\frac{1}{x} \biggr)^{x}=e \Biggl(1- \sum _{k=1}^{\infty}\frac{b_{k}}{ (1+x )^{k}} \Biggr)=e \Biggl(1-\sum _{k=1}^{\infty}\frac{d_{k}}{ (\frac{11}{12}+x )^{k}} \Biggr), \\& \sigma_{m}(x)=\sum_{k=1}^{m} \frac{b_{k}}{ (1+x )^{k}} \quad\mbox{and}\quad S_{m}(x)=\sum_{k=1}^{m} \frac{d_{k}}{ (\frac{11}{12}+x )^{k}}. \end{aligned}$$
(1)
If \(m\geq6\) is even, we have \(S_{m}(x)>\sigma_{m}(x)\) for all \(x>0\).
 
(2)
If \(m\geq7\) is odd, we have \(S_{m}(x)>\sigma_{m}(x)\) for all \(x>1\).
 
This provides an intuitive explanation for the main result in Mortici and Hu (On an infinite series for \((1+ 1/x)^{x}\), 2014, arXiv:​1406.​7814 [math.CA]).
Notes

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors’ contributions

The authors completed the paper together. They each read and approved the final manuscript.

1 Introduction

The Carleman inequality [2]
$$ \sum_{n=1}^{\infty} ( a_{1}a_{2} \cdots a_{n} ) ^{1/n}< e\sum_{n=1}^{\infty}a_{n}, $$
whenever \(a_{n}\geq0\), \(n=1,2,3,\ldots\) , with \(0<\sum_{n=1}^{\infty}a_{n}<\infty\), has attracted the attention of many authors in the recent past [1, 310].
In [7], Yang proved
$$ \sum_{n=1}^{\infty} ( a_{1}a_{2} \cdots a_{n} ) ^{1/n}< e\sum_{n=1}^{\infty} \Biggl( 1-\sum_{k=1}^{6}\frac{b_{k}}{ ( n+1 ) ^{k}} \Biggr) a_{n} $$
with \(b_{1}=1/2\), \(b_{2}=1/24\), \(b_{3}=1/48\), \(b_{4}=73/5{,}760\), \(b_{5}=11/1{,}280\), \(b_{6}=1{,}945/580{,}608\), and Yang conjectured that if
$$ \biggl( 1+\frac{1}{x} \biggr) ^{x}=e \Biggl( 1-\sum _{k=1}^{\infty}\frac {b_{k}}{ ( x+1 ) ^{k}} \Biggr) ,\quad x>0, $$
(1.1)
then \(b_{k}>0\), \(k=1,2,3,\ldots\) .
Later, this conjecture was proved by Yang [8], Gylletberg and Yan [11], and Chen [9], respectively. As an application, Yang proved for any positive integer m
$$ \sum_{n=1}^{\infty} ( a_{1}a_{2} \cdots a_{n} ) ^{1/n}< e\sum_{n=1}^{\infty} \Biggl( 1-\sum_{k=1}^{m }\frac{b_{k}}{ ( n+1 ) ^{k}} \Biggr) a_{n}, $$
(1.2)
whenever \(a_{n}\geq0\), \(n=1,2,3,\ldots\) , and \(0<\sum_{n=1}^{\infty }a_{n}<\infty\), with \(b_{1}=\frac{1}{2}\) and
$$ b_{n+1}=\frac{1}{n+1} \Biggl( \frac{1}{n+2}-\sum _{k=1}^{n}\frac {b_{k}}{n+2-k} \Biggr).$$
In the final part of his paper, Yang [8] remarked that in order to obtain better results, the right-hand side of (1.1) could be replaced by \(e [ 1-\sum_{n=1}^{\infty} ( d_{n}/ ( x+\varepsilon ) ^{n} ) ] \), where \(\varepsilon\in(0,1]\) and \(d_{n}=d_{n} ( \varepsilon ) \), but information about the values of ε are not provided.
Recently, Mortici and Hu [1] proved that \(\varepsilon=11/12\) provides the faster series
$$\sum_{n=1}^{\infty}\frac{d_{n}}{ (x+\varepsilon) ^{n}} $$
and therefore the following inequality is better than (1.2):
$$ \sum_{n=1}^{\infty} ( a_{1}a_{2} \cdots a_{n} ) ^{1/n}< e\sum_{n=1}^{\infty} \Biggl( 1-\sum_{k=1}^{m }\frac{d_{k}}{ ( n+\frac{11}{12} ) ^{k}} \Biggr) a_{n}. $$
(1.3)
The proof of this conclusion is based on the following theorem [12], which is a powerful tool for measuring the speed of convergence.
Theorem
If \(( \omega_{n} )_{n\geq1}\) is convergent to zero and
$$ \lim_{n\rightarrow\infty}n^{k}(\omega_{n}- \omega_{n+1})=l\in \mathbb{R}, $$
with \(k>1\), then there exists the limit
$$ \lim_{n\rightarrow\infty}n^{k-1}\omega_{n}= \frac{l}{k-1}. $$
The purpose of this paper is to establish some inequalities which explain Mortici’s conclusion in a quantitative way. But our proof is not based on the theorem.
Our main result is the following theorem.
Theorem 1
Let
$$\begin{aligned}& \biggl(1+\frac{1}{x} \biggr)^{x}=e \Biggl(1- \sum _{k=1}^{\infty}\frac{b_{k}}{ (1+x )^{k}} \Biggr)=e \Biggl(1-\sum _{k=1}^{\infty}\frac{d_{k}}{ (\frac{11}{12}+x )^{k}} \Biggr), \\& \sigma_{m}(x)=\sum_{k=1}^{m} \frac{b_{k}}{ (1+x )^{k}} \quad\textit{and}\quad S_{m}(x)=\sum_{k=1}^{m} \frac{d_{k}}{ (\frac{11}{12}+x )^{k}}. \end{aligned}$$
(1)
If \(m\geq6\) is even, then \(S_{m}(x)>\sigma_{m}(x)\) for all \(x>0\).
 
(2)
If \(m\geq7\) is odd, then \(S_{m}(x)>\sigma_{m}(x)\) for all \(x>1\).
 

2 Lemmas

In order to prove our main results we need the following lemmas, and throughout this paper we set
$$\begin{aligned}& g(s)=\frac{1}{\pi}s^{s}(1-s)^{1-s}\sin(\pi s),\\& h(s,x)=\frac{1}{1-s+x} \biggl(\frac{s}{1+x} \biggr)^{m-1}- \frac{1}{s+x} \biggl(\frac{12s-1}{11+12x} \biggr)^{m-1}. \end{aligned}$$
Here \(0\leq{s}\leq1\), \(x>0\), and \(m\geq1\) is an integer.
Lemma 1
For \(x>0\), let
$$\biggl(1+\frac{1}{x} \biggr)^{x}=e \Biggl(1- \sum _{k=1}^{\infty}\frac{b_{k}}{ (1+x )^{k}} \Biggr). $$
Then
$$\begin{aligned}& b_{k}>0 ,\quad k=1,2 ,\ldots, \end{aligned}$$
(2.1)
$$\begin{aligned}& b_{1}=\frac{1}{2}, \end{aligned}$$
(2.2)
$$\begin{aligned}& b_{n+1}=\frac{1}{n+1} \Biggl(\frac{1}{n+2}-\sum _{j=1}^{n}\frac{b_{j}}{n+2-j} \Biggr),\quad n=1 ,2 ,\ldots, \\& eb_{k}=\int_{0}^{1}g(s)s^{k-2}\,ds,\quad k= 1, 2 , \ldots. \end{aligned}$$
(2.3)
Proof
For (2.1) and (2.2), see [7]. For (2.3), see [13]. □
Remark 1
By (2.3) of Lemma 1, we have
$$\int_{0}^{1}g(s) (s)^{n-2}\,ds= \int_{0}^{1}g(s) (1-s)^{n-2}\,ds=eb_{n}\quad (n=2,3,\ldots). $$
Example
$$\begin{aligned}& \int_{0}^{1}g(s)\,ds=eb_{2}= \frac{e}{24},\qquad \int_{0}^{1}g(s)s\,ds=eb_{3}= \frac{e}{48},\\& \begin{aligned}[b] \int_{0}^{1}\frac{1}{s}g(s)\,ds&= \int_{0}^{1}\frac{1}{1-s}g(s)\,ds \\ &= \int_{0}^{1}\bigl(1+s+s^{2}+\dotsm \bigr)g(s)\,ds \\ &=e\sum_{n=2}^{\infty}b_{n} =e\sum _{n=1}^{\infty}b_{n}-eb_{1} \\ &=e\biggl(1-\frac{1}{e}\biggr)-\frac{e}{2} =\frac{e}{2}-1. \end{aligned} \end{aligned}$$
Lemma 2
For \(x>0\), let
$$\biggl(1+\frac{1}{x} \biggr)^{x}=e \Biggl(1- \sum _{k=1}^{\infty}\frac{d_{k}}{ (\frac{11}{12}+x )^{k}} \Biggr). $$
Then
$$\begin{aligned} &d_{1}=\frac{1}{2}, \end{aligned}$$
(2.4)
$$\begin{aligned} &d_{n+1}=\frac{ (-1 )^{n+1}}{12^{n-1}e} \biggl(1+ \int_{0}^{1}g(s)\frac{ (12s-1 )^{n-1}}{s}\,ds \biggr),\quad n=1,2,\ldots, \\ &d_{n}>0 ,\quad n=4,5,\ldots, \end{aligned}$$
(2.5)
$$\begin{aligned} &b_{n}>d_{n} ,\quad n=2,3,\ldots. \end{aligned}$$
(2.6)
Proof
For (2.4), see [1].
Now, we prove (2.5). If n is an odd, then \(d_{n+1}\) is obviously positive.
If n is an even, then we have for all \(n\geq4\)
$$\begin{aligned}& \int_{0}^{\frac{1}{12}}\frac{g(s)}{s} (1-12s )^{n-1}\,ds\leq \int_{0}^{\frac{1}{12}}\frac{g(s)}{s} (1-12s )^{3}\,ds, \end{aligned}$$
(2.7)
$$\begin{aligned}& \int_{\frac{1}{12}}^{\frac{1}{6}}\frac{g(s)}{s} (1-12s )^{n-1}\,ds< 0, \end{aligned}$$
(2.8)
$$\begin{aligned}& \int_{\frac{1}{6}}^{1}\frac{g(s)}{s} (1-12s )^{n-1}\,ds\leq \int_{\frac{1}{6}}^{1}\frac{g(s)}{s} (1-12s )^{3}\,ds. \end{aligned}$$
(2.9)
From (2.7), (2.8), (2.9), and Remark 1, we get
$$\begin{aligned} \int_{0}^{1}\frac{g(s)}{s} (1-12s )^{n-1}\,ds \leq{}& \int_{0}^{1} \biggl(\frac{1}{s}-36+432s-1{,}728s^{2} \biggr)g(s)\,ds\\ &{}+ \int_{\frac{1}{12}}^{\frac{1}{6}} \bigl(1{,}728s^{2}-432s+30 \bigr)\,ds\\ \leq{}& \biggl(\frac{e}{2}-1 \biggr)-\frac{3e}{2}+9e-21.9e+6 \int_{0}^{1}g(s)\,ds\\ ={}&{-}1-13.9e+\frac{e}{4}< -1. \end{aligned}$$
Thus from this and (2.4), we have \(d_{n+1}>0\). This proves (2.5). The proof of (2.6) is similar to (2.5). □
Remark 2
By Lemma 2, it is not obvious that \(S_{m}(x)>\sigma_{m}(x)\).
Lemma 3
Let \(m\geq3\) be an integer, we have
$$ (-1 )^{m-1}+ \int_{0}^{1}\frac{g(s)}{1-s} (12s-1 )^{m-1}\,ds>0. $$
(2.10)
Proof
The proof is similar to the proof of (2.5). □
Lemma 4
Let \(x>0\), and \(m\geq6\) be an integer. Then we have for all \(\frac{1}{12}\leq{s}\leq\frac{1}{2}\)
$$ h(s,x)>0. $$
(2.11)
Proof
Noting that \(\frac{s(\frac{11}{12}+x)}{(s-\frac{1}{12})(1+x)}>1\) for all \(x>0\), the inequality (2.11) is equivalent to
$$ \biggl(\frac{(s-\frac{1}{12})(1+x)}{s(\frac{11}{12}+x)} \biggr)^{5} < \frac{s+x}{1-s+x}. $$
(2.12)
To prove (2.12), we define \(h_{1}(s,x)\) as
$$ h_{1}=\ln(1-s+x)-\ln(s+x)+5\ln\biggl(s-\frac{1}{12}\biggr)+5 \ln(1+x)-5\ln{s}-5\ln \biggl(\frac{11}{12}+x\biggr). $$
(2.13)
Easy computations reveal that
$$\begin{aligned}& h_{1}\biggl(\frac{1}{2},0\biggr)=5\ln\biggl(\frac{10}{11} \biggr)< 0, \end{aligned}$$
(2.14)
$$\begin{aligned}& \frac{\partial{h_{1}(s,0)}}{\partial{s}}>0, \end{aligned}$$
(2.15)
$$\begin{aligned}& \frac{\partial{h_{1}(s,x)}}{\partial{x}}< 0. \end{aligned}$$
(2.16)
Thus from (2.14), (2.15), and (2.16), we have
$${h_{1}(s,x)}\leq{h_{1}(s,0)}\leq{h_{1}\biggl( \frac{1}{2},0\biggr)}< 0, $$
which implies
$$h(s,x)>0. $$
 □
Lemma 5
Let \(x>0\), and \(m\geq2\) be an integer, then \(h(s,x)\) is a monotonic increasing function of s on \([\frac{1}{2},1]\). If m is an odd, then \(h(s,x)\) is a monotonic increasing function of s on \([0,\frac{1}{12}]\).
Proof
It suffices to show that \(\frac{\partial{h(s,x)}}{\partial{s}}>0\). Partial differentiation yields
$$\begin{aligned} \frac{\partial{h(s,x)}}{\partial{s}} \geq{}&\frac{m-1}{(1+x)(1-s+x)} \biggl(\frac{s}{1+x} \biggr)^{m-2} \\ &{}- \frac{m-1}{(11+12x)(s+x)} \biggl(\frac{12s-1}{11+12x} \biggr)^{m-2}. \end{aligned}$$
(2.17)
If \(\frac{1}{2}\leq{s}\leq{1}\), then for all \(x>0\) and \({m}\geq{2}\), we have
$$\begin{aligned}& \frac{m-1}{(1+x)(1-s+x)}>\frac{m-1}{(11+12x)(s+x)},\\& \frac{s}{1+x}>\frac{12s-1}{11+12x}. \end{aligned}$$
Thus
$$\frac{\partial{h(s,x)}}{\partial{s}}>0. $$
If m is an odd, then for \(0<{s}<\frac{1}{12}\), we have
$$(12s-1)^{m-2}< 0. $$
From this and (2.17), we get
$$\frac{\partial{h(s,x)}}{\partial{s}}>0. $$
This completes the proof of Lemma 5. □
Lemma 6
Let \(m\geq3\) be an integer, then we have for all \(x\geq1\)
$$ h\biggl(\frac{1}{2},x\biggr)>\bigl|h(0,x)\bigr|. $$
(2.18)
Proof
Because of \(x>1\), (2.18) is equivalent to
$$ \biggl(5+\frac{1+2x}{2+2x} \biggr)^{m-1}-5^{m-1}>1+ \frac{1}{2x}. $$
(2.19)
The equality (2.19) follows immediately from
$$(m-1)5^{m-2}\frac{1+2x}{2+2x}>(m-1)5^{m-2}\frac{3}{4}> \frac{3}{2}. $$
 □

3 Proof of Theorem 1

Proof
By Lemma 1 and Lemma 2, we get for \(m\geq2\)
$$\begin{aligned}& \begin{aligned}[b] \sigma_{m}(x)&= \frac{e/2}{1+x}+\sum _{k=2}^{m} \int_{0}^{1}\frac{g(s)}{s^{2}} \biggl( \frac {s}{1+x} \biggr)^{k}\,ds \\ &=\frac{e}{2(1+x)}+ \int_{0}^{1}\frac{g(s)}{s^{2}}\sum _{k=2}^{m} \biggl(\frac{s}{1+x} \biggr)^{k}\,ds \\ &=\frac{e}{2(1+x)}+ \int_{0}^{1} \frac{g(s)}{(1+x)(1+x-s)} \biggl(1- \biggl( \frac{s}{1+x} \biggr)^{m-1} \biggr)\,ds \\ &=\frac{e}{2(1+x)}+ \int_{0}^{1}\frac{g(s)}{(1+x)(x+s)}\,ds- \int_{0}^{1}\frac{g(s)}{(1+x)(1-s+x)} \biggl( \frac{s}{1+x} \biggr)^{m-1}\,ds, \end{aligned}\\& \begin{aligned}[b] S_{m}(x)={}&\frac{e}{2(1+x)}+ \int_{0}^{1}\frac{g(s)}{(x+s)(1+x)} +\frac{(-1)^{m-1}}{(11+12x)^{m}(1+x)}\\ &{}- \int_{0}^{1}\frac{g(s)}{(1+x)(x+s)} \biggl( \frac{12s-1}{11+12x} \biggr)^{m-1}\,ds\\ &{}+ \int_{0}^{1}\frac{g(s)}{(11+12x)(1+x)(1-s)} \biggl( \frac {12s-1}{11+12x} \biggr)^{m-1}\,ds. \end{aligned} \end{aligned}$$
To prove our result, we consider
$$\begin{aligned} S_{m}(x)-\sigma_{m}(x) ={}&\frac{1}{(11+12x)^{m}(1+x)} \biggl((-1)^{m-1}+ \int_{0}^{1}\frac {g(s)}{1-s}(12s-1)^{m-1} \biggr) \\ &{}+\frac{1}{1+x} \int_{0}^{1}g(s) \biggl(\frac{1}{1-s+x} \biggl( \frac{s}{1+x} \biggr)^{m-1}-\frac{1}{x+s} \biggl( \frac {12s-1}{11+12x} \biggr)^{m-1} \biggr)\,ds \\ ={}&\frac{1}{(11+12x)^{m}(1+x)} \biggl((-1)^{m-1}+ \int_{0}^{1}\frac {g(s)}{1-s}(12s-1)^{m-1} \biggr) \\ &{}+\frac{1}{1+x} \int_{0}^{1}g(s)h(s,x)\,ds. \end{aligned}$$
By Lemma 3, it suffices to show that
$$\int_{0}^{1}g(s)h(s,x)\,ds>0. $$
Let first \(m\geq6\) be even. From Lemma 4 and Lemma 5, for all \(x>0\), we have
$$\int_{0}^{1}g(s)h(s,x)\,ds= \int_{0}^{\frac{1}{12}}g(s)h(s,x)\,ds + \int_{\frac{1}{12}}^{\frac{1}{2}}g(s)h(s,x)\,ds+ \int_{\frac {1}{2}}^{1}g(s)h(s,x)\,ds>0. $$
Here we used the fact that if m is an even and \(0\leq s\leq 1/12\), then \(h(s,x)>0\) for any \(x>0\).
Now let \(m\geq7\) be odd. From Lemma 4, Lemma 5, and Lemma 6 for all \(x\geq1\) we have
$$\begin{aligned} \int_{0}^{1}g(s)h(s,x)\,ds&= \int_{0}^{\frac{1}{12}}g(s)h(s,x)\,ds + \int_{\frac{1}{12}}^{\frac{1}{2}}g(s)h(s,x)\,ds+ \int_{\frac {1}{2}}^{1}g(s)h(s,x)\,ds \\ &\geq \int_{0}^{\frac{1}{12}}g(s)h(0,x)\,ds + \int_{\frac{1}{12}}^{\frac{1}{2}}g(s)h(s,x)\,ds+ \int_{\frac {1}{2}}^{1}g(s)h\biggl(\frac{1}{2},x \biggr)\,ds \\ &\geq\biggl(h(0,x)+h\biggl(\frac{1}{2},x\biggr)\biggr) \int_{0}^{\frac{1}{12}}g(s)\,ds + \int_{\frac{1}{12}}^{\frac{1}{2}}g(s)h(s,x)\,ds>0. \end{aligned}$$
This completes the proof of Theorem 1. □
Remark 3
By using computer simulation, we find \(S_{m}(x)>\sigma_{m}(x)\) for all \(x>0\) and all \(m\geq1\), but we leave as an open problem the rigorous proof of this fact.

4 Conclusions

In this paper, we have established some inequalities which explain Mortici’s result in a quantitative way. The authors believe that the present analysis will lead to a significant contribution toward the study of the Carleman inequality.

Acknowledgements

The authors are very grateful to the anonymous referees and the Editor for their insightful comments and suggestions. The authors are grateful to Professor Hongwei Chen, Christopher Newport University, USA, for his kind help and valuable suggestions in the preparation of this paper. Supported by Foundation Lead-edga Technologies Research Project of Henan Province, No. 122300410061.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors’ contributions

The authors completed the paper together. They each read and approved the final manuscript.
Literature
2.
go back to reference Hardy, GH, Littlewood, JE, Polya, G: Inequalities. Cambridge University Press, London (1952) MATH Hardy, GH, Littlewood, JE, Polya, G: Inequalities. Cambridge University Press, London (1952) MATH
3.
go back to reference Bicheng, Y, Debnath, L: Some inequalities involving the constant e and an application to Carleman’s inequality. J. Math. Anal. Appl. 223, 347-353 (1998) CrossRefMathSciNetMATH Bicheng, Y, Debnath, L: Some inequalities involving the constant e and an application to Carleman’s inequality. J. Math. Anal. Appl. 223, 347-353 (1998) CrossRefMathSciNetMATH
4.
go back to reference Mortici, C, Hu, Y: On some convergences to the constant e and improvements of Carleman’s inequality. Carpath. J. Math. 31, 249-254 (2015) MathSciNet Mortici, C, Hu, Y: On some convergences to the constant e and improvements of Carleman’s inequality. Carpath. J. Math. 31, 249-254 (2015) MathSciNet
5.
go back to reference Mortici, C, Yang, X: Estimates of \((1+ 1/x)^{x}\) involved in Carleman’s inequality and Keller’s limit. Filomat 7, 1535-1539 (2015) CrossRefMathSciNet Mortici, C, Yang, X: Estimates of \((1+ 1/x)^{x}\) involved in Carleman’s inequality and Keller’s limit. Filomat 7, 1535-1539 (2015) CrossRefMathSciNet
9.
10.
go back to reference Liu, H, Zhu, L: New strengthened Carleman’s inequality and Hardy’s inequality. J. Inequal. Appl. 2007, Article ID 84104 (2007) CrossRefMATH Liu, H, Zhu, L: New strengthened Carleman’s inequality and Hardy’s inequality. J. Inequal. Appl. 2007, Article ID 84104 (2007) CrossRefMATH
13.
go back to reference Hu, Y, Mortici, C: On the coefficients of an expansion of \((1+\frac{1}{x})^{x}\) related to Carleman’s inequality (2014). arXiv:1401.2236 [math.CA] Hu, Y, Mortici, C: On the coefficients of an expansion of \((1+\frac{1}{x})^{x}\) related to Carleman’s inequality (2014). arXiv:​1401.​2236 [math.CA]
Metadata
Title
Some inequalities related to two expansions of
Authors
Bijun Ren
Xiao Li
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2015
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0928-5

Other articles of this Issue 1/2015

Journal of Inequalities and Applications 1/2015 Go to the issue

Premium Partner