Skip to main content
Top
Published in: Wireless Networks 4/2023

11-02-2023 | OriginalPaper

Source location privacy in wireless sensor networks: What is the right choice of privacy metric?

Authors: Tejodbhav Koduru, R. Manjula

Published in: Wireless Networks | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Today, communication between objects, machines, objects to machines and to humans is possible due to the Internet of Things (IoT). However, their applicability is restricted mostly to areas that are inhabited by humans. Monitoring and tracking in wilderness areas is still a challenging task to date, if not impossible. To bridge this gap, IoT networks are instrumented with Wireless Sensor Networks that are capable of providing remote services through multi-hop communication paradigm. Since these networks are deployed in deserted places, it becomes very crucial to protect the privacy of the location information of critical events or sources that these networks are monitoring. To this end, we propose a new random-walk based routing protocol namely BLS (Backward walk, L-walk, Shortest path walk) to protect the location of critical sources/events. The aim is to break the correlations between the network traffic and render the traffic-analysis efforts of the attacker, in locating the source of information, useless. In addition, we also evaluate the performance of the proposed technique by comparing it with the existing techniques using different privacy metrics such as safety period, entropy and capture ratio. Through this research work, we observed that the performance of source location privacy (SLP) preservation techniques is giving differing results for different privacy metrics. Although the proposed solution outperforms in terms of entropy metric by 104.59-folds improvements compared to Forward Random Walk technique, its performance in terms of safety period and capture ratio metrics are very poor with an improvement of just 0.65-folds and 0.1-fold respectively. Therefore, there is a dire need to come up with a right choice of metric for SLP preservation techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kang, J. J., Yang, W., Dermody, G., Ghasemian, M., Adibi, S., & Haskell-Dowland, P. (2020). No soldiers left behind: An iot-based low-power military mobile health system design. IEEE Access, 8, 201498–201515.CrossRef Kang, J. J., Yang, W., Dermody, G., Ghasemian, M., Adibi, S., & Haskell-Dowland, P. (2020). No soldiers left behind: An iot-based low-power military mobile health system design. IEEE Access, 8, 201498–201515.CrossRef
3.
go back to reference Qadri, Y. A., Nauman, A., Zikria, Y. B., Vasilakos, A. V., & Kim, S. W. (2020). The future of healthcare internet of things: A survey of emerging technologies. IEEE Communications Surveys and Tutorials, 22(2), 1121–1167.CrossRef Qadri, Y. A., Nauman, A., Zikria, Y. B., Vasilakos, A. V., & Kim, S. W. (2020). The future of healthcare internet of things: A survey of emerging technologies. IEEE Communications Surveys and Tutorials, 22(2), 1121–1167.CrossRef
5.
go back to reference Conti, M., Willemsen, J., & Crispo, B. (2013). Providing source location privacy in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(3), 1238–1280.CrossRef Conti, M., Willemsen, J., & Crispo, B. (2013). Providing source location privacy in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(3), 1238–1280.CrossRef
6.
go back to reference Deng, J., Han, R., & Mishra, S. (2006). Decorrelating wireless sensor network traffic to inhibit traffic analysis attacks. Pervasive and Mobile Computing, 2(2), 159–186.CrossRef Deng, J., Han, R., & Mishra, S. (2006). Decorrelating wireless sensor network traffic to inhibit traffic analysis attacks. Pervasive and Mobile Computing, 2(2), 159–186.CrossRef
7.
go back to reference Li, N., Zhang, N., Das, S. K., & Thuraisingham, B. (2009). Privacy preservation in wireless sensor networks: A state-of-the-art survey. Ad Hoc Networks, 7(8), 1501–1514.CrossRef Li, N., Zhang, N., Das, S. K., & Thuraisingham, B. (2009). Privacy preservation in wireless sensor networks: A state-of-the-art survey. Ad Hoc Networks, 7(8), 1501–1514.CrossRef
8.
go back to reference Ozturk, C., Zhang, Y., & Trappe, W. (2004). Source-location privacy in energy-constrained sensor network routing. In Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks (pp. 88–93). ACM. Ozturk, C., Zhang, Y., & Trappe, W. (2004). Source-location privacy in energy-constrained sensor network routing. In Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks (pp. 88–93). ACM.
9.
go back to reference Wagner, I., & Eckhoff, D. (2018). Technical privacy metrics: A systematic survey. ACM Computing Surveys (CSUR), 51(3), 1–38.CrossRef Wagner, I., & Eckhoff, D. (2018). Technical privacy metrics: A systematic survey. ACM Computing Surveys (CSUR), 51(3), 1–38.CrossRef
10.
go back to reference Laikin, J. F., Bradbury, M., Gu, C., & Leeke, M. (2016). Towards fake sources for source location privacy in wireless sensor networks with multiple sources. In 2016 IEEE international conference on communication systems (ICCS) (pp. 1–6). IEEE. Laikin, J. F., Bradbury, M., Gu, C., & Leeke, M. (2016). Towards fake sources for source location privacy in wireless sensor networks with multiple sources. In 2016 IEEE international conference on communication systems (ICCS) (pp. 1–6). IEEE.
11.
go back to reference Ozturk, C., Zhang, Y., Trappe, W., & Ott, M. (2004). Source-location privacy for networks of energy-constrained sensors. In Second IEEE workshop on software technologies for future embedded and ubiquitous systems, proceedings (Vol. 2004, pp. 68–72). Ozturk, C., Zhang, Y., Trappe, W., & Ott, M. (2004). Source-location privacy for networks of energy-constrained sensors. In Second IEEE workshop on software technologies for future embedded and ubiquitous systems, proceedings (Vol. 2004, pp. 68–72).
12.
go back to reference Wang, W. P., Chen, L., & Wang, J. (2008). A source-location privacy protocol in wsn based on locational angle. IEEE International Conference on Communications, 2008, 1630–1634. Wang, W. P., Chen, L., & Wang, J. (2008). A source-location privacy protocol in wsn based on locational angle. IEEE International Conference on Communications, 2008, 1630–1634.
13.
go back to reference Chen, H., & Lou, W. (2015). On protecting end-to-end location privacy against local eavesdropper in wireless sensor networks. Pervasive and Mobile Computing, 16, 36–50.CrossRef Chen, H., & Lou, W. (2015). On protecting end-to-end location privacy against local eavesdropper in wireless sensor networks. Pervasive and Mobile Computing, 16, 36–50.CrossRef
14.
go back to reference Raja, M., & Datta, R. (2018). An enhanced source location privacy protection technique for wireless sensor networks using randomized routes. IETE Journal of Research, 64(6), 764–776.CrossRef Raja, M., & Datta, R. (2018). An enhanced source location privacy protection technique for wireless sensor networks using randomized routes. IETE Journal of Research, 64(6), 764–776.CrossRef
15.
go back to reference Han, G., Wang, H., Guizani, M., Chan, S., & Zhang, W. (2018). Kclp: A k-means cluster-based location privacy protection scheme in wsns for iot. IEEE Wireless Communications, 25(6), 84–90.CrossRef Han, G., Wang, H., Guizani, M., Chan, S., & Zhang, W. (2018). Kclp: A k-means cluster-based location privacy protection scheme in wsns for iot. IEEE Wireless Communications, 25(6), 84–90.CrossRef
16.
go back to reference Al-Mistarihi, M. F., Tanash, I. M., Yaseen, F. S., & Darabkh, K. A. (2020). Protecting source location privacy in a clustered wireless sensor networks against local eavesdroppers. Mobile Networks and Applications, 25(1), 42–54.CrossRef Al-Mistarihi, M. F., Tanash, I. M., Yaseen, F. S., & Darabkh, K. A. (2020). Protecting source location privacy in a clustered wireless sensor networks against local eavesdroppers. Mobile Networks and Applications, 25(1), 42–54.CrossRef
17.
go back to reference Singh, P. K., Agarwal, A., Nakum, G., Rawat, D. B., & Nandi, S. (2020). Mpfslp: Masqueraded probabilistic flooding for source-location privacy in vanets. IEEE Transactions on Vehicular Technology, 69(10), 11383–11393.CrossRef Singh, P. K., Agarwal, A., Nakum, G., Rawat, D. B., & Nandi, S. (2020). Mpfslp: Masqueraded probabilistic flooding for source-location privacy in vanets. IEEE Transactions on Vehicular Technology, 69(10), 11383–11393.CrossRef
18.
go back to reference Gamage, S., & Samarabandu, J. (2020). Deep learning methods in network intrusion detection: A survey and an objective comparison. Journal of Network and Computer Applications, 169, 102767.CrossRef Gamage, S., & Samarabandu, J. (2020). Deep learning methods in network intrusion detection: A survey and an objective comparison. Journal of Network and Computer Applications, 169, 102767.CrossRef
Metadata
Title
Source location privacy in wireless sensor networks: What is the right choice of privacy metric?
Authors
Tejodbhav Koduru
R. Manjula
Publication date
11-02-2023
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2023
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-023-03237-4

Other articles of this Issue 4/2023

Wireless Networks 4/2023 Go to the issue