Skip to main content
Top
Published in: Multimedia Systems 5/2023

12-08-2023 | Regular Paper

Spatial attention-guided deformable fusion network for salient object detection

Authors: Aiping Yang, Yan Liu, Simeng Cheng, Jiale Cao, Zhong Ji, Yanwei Pang

Published in: Multimedia Systems | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most of salient object detection methods employ U-shape architecture as the understructure. Although promising performance has been achieved, they struggle to detect salient objects with non-rigid shapes and arbitrary sizes. Besides, the features are transmitted to the decoder directly without any discrimination and active selection, resulting in prominent features underutilized. To address the above issues, we propose a spatial-attention-guided deformable fusion network for salient object detection, which consists of a contour enhancement module (CEM), a spatial-attention-guided deformable fusion module (SADFM) and a gate module (GM). Specifically, the CEM is designed to obtain global features, aiming to reduce the loss of high-level features in the transfer process. The SADFM develops the spatial attention to guide the deformable convolution to aggregate global features, high-level and low-level features adaptively. Furthermore, the GM is employed to refine the initial fusion features and predict the salient regions accurately. Experiments on five public datasets verify the effectiveness of our method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, H., Li, Z., Li, Y., Gupta, B.B., Choi, C.: Visual saliency guided complex image retrieval. Pattern Recogn. Lett. 130, 64–72 (2020)CrossRef Wang, H., Li, Z., Li, Y., Gupta, B.B., Choi, C.: Visual saliency guided complex image retrieval. Pattern Recogn. Lett. 130, 64–72 (2020)CrossRef
2.
go back to reference Zhang, Y., Gao, X., Chen, Z., Zhong, H., Li, L., Yan, C., Shen, T.: Learning salient features to prevent model drift for correlation tracking. Neurocomputing 418, 1–10 (2020)CrossRef Zhang, Y., Gao, X., Chen, Z., Zhong, H., Li, L., Yan, C., Shen, T.: Learning salient features to prevent model drift for correlation tracking. Neurocomputing 418, 1–10 (2020)CrossRef
3.
go back to reference Kampffmeyer, M., Dong, N., Liang, X., Zhang, Y., Xing, E.P.: Connnet: a long-range relation-aware pixel-connectivity network for salient segmentation. IEEE Trans. Image Process. 28(5), 2518–2529 (2018)MathSciNetCrossRef Kampffmeyer, M., Dong, N., Liang, X., Zhang, Y., Xing, E.P.: Connnet: a long-range relation-aware pixel-connectivity network for salient segmentation. IEEE Trans. Image Process. 28(5), 2518–2529 (2018)MathSciNetCrossRef
4.
go back to reference Chen, Z., Zhou, H., Lai, J., Yang, L., Xie, X.: Contour-aware loss: boundary-aware learning for salient object segmentation. IEEE Trans. Image Process. 30, 431–443 (2020)CrossRef Chen, Z., Zhou, H., Lai, J., Yang, L., Xie, X.: Contour-aware loss: boundary-aware learning for salient object segmentation. IEEE Trans. Image Process. 30, 431–443 (2020)CrossRef
5.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
6.
go back to reference Chen, T., Hu, X., Xiao, J., Zhang, G.: Bpfinet: boundary-aware progressive feature integration network for salient object detection. Neurocomputing 451, 152–166 (2021)CrossRef Chen, T., Hu, X., Xiao, J., Zhang, G.: Bpfinet: boundary-aware progressive feature integration network for salient object detection. Neurocomputing 451, 152–166 (2021)CrossRef
7.
go back to reference Hou, Q., Cheng, M.-M., Hu, X., Borji, A., Tu, Z., Torr, P.H.: Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3203–3212 (2017) Hou, Q., Cheng, M.-M., Hu, X., Borji, A., Tu, Z., Torr, P.H.: Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3203–3212 (2017)
8.
go back to reference Liu, J.-J., Hou, Q., Cheng, M.-M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3917–3926 (2019) Liu, J.-J., Hou, Q., Cheng, M.-M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3917–3926 (2019)
9.
go back to reference Deng, J.: A large-scale hierarchical image database. In: Proceedings IEEE Computer Vision and Pattern Recognition (2009) Deng, J.: A large-scale hierarchical image database. In: Proceedings IEEE Computer Vision and Pattern Recognition (2009)
10.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
11.
go back to reference Pang, Y., Zhao, X., Zhang, L., Lu, H.: Multi-scale interactive network for salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9413–9422 (2020) Pang, Y., Zhao, X., Zhang, L., Lu, H.: Multi-scale interactive network for salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9413–9422 (2020)
12.
go back to reference Mohammadi, S., Noori, M., Bahri, A., Majelan, S.G., Havaei, M.: Cagnet: content-aware guidance for salient object detection. Pattern Recogn. 103, 107303 (2020)CrossRef Mohammadi, S., Noori, M., Bahri, A., Majelan, S.G., Havaei, M.: Cagnet: content-aware guidance for salient object detection. Pattern Recogn. 103, 107303 (2020)CrossRef
13.
go back to reference Zhao, X., Pang, Y., Zhang, L., Lu, H., Zhang, L.: Suppress and balance: a simple gated network for salient object detection. In: European Conference on Computer Vision, pp. 35–51 (2020). Springer Zhao, X., Pang, Y., Zhang, L., Lu, H., Zhang, L.: Suppress and balance: a simple gated network for salient object detection. In: European Conference on Computer Vision, pp. 35–51 (2020). Springer
14.
go back to reference Feng, G., Bo, H., Sun, J., Zhang, L., Lu, H.: Cacnet: salient object detection via context aggregation and contrast embedding. Neurocomputing 403, 33–44 (2020)CrossRef Feng, G., Bo, H., Sun, J., Zhang, L., Lu, H.: Cacnet: salient object detection via context aggregation and contrast embedding. Neurocomputing 403, 33–44 (2020)CrossRef
15.
go back to reference Liu, Y., Duanmu, M., Huo, Z., Qi, H., Chen, Z., Li, L., Zhang, Q.: Exploring multi-scale deformable context and channel-wise attention for salient object detection. Neurocomputing 428, 92–103 (2021)CrossRef Liu, Y., Duanmu, M., Huo, Z., Qi, H., Chen, Z., Li, L., Zhang, Q.: Exploring multi-scale deformable context and channel-wise attention for salient object detection. Neurocomputing 428, 92–103 (2021)CrossRef
16.
go back to reference Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017) Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)
17.
go back to reference Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019) Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)
18.
go back to reference Lee, G., Tai, Y.-W., Kim, J.: Deep saliency with encoded low level distance map and high level features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 660–668 (2016) Lee, G., Tai, Y.-W., Kim, J.: Deep saliency with encoded low level distance map and high level features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 660–668 (2016)
19.
go back to reference Tang, Y., Wu, X., Bu, W.: Deeply-supervised recurrent convolutional neural network for saliency detection. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 397–401 (2016) Tang, Y., Wu, X., Bu, W.: Deeply-supervised recurrent convolutional neural network for saliency detection. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 397–401 (2016)
20.
go back to reference Zhao, T., Wu, X.: Pyramid feature attention network for saliency detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3085–3094 (2019) Zhao, T., Wu, X.: Pyramid feature attention network for saliency detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3085–3094 (2019)
21.
go back to reference Chen, Z., Xu, Q., Cong, R., Huang, Q.: Global context-aware progressive aggregation network for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10599–10606 (2020) Chen, Z., Xu, Q., Cong, R., Huang, Q.: Global context-aware progressive aggregation network for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10599–10606 (2020)
22.
go back to reference Luo, Z., Mishra, A., Achkar, A., Eichel, J., Li, S., Jodoin, P.-M.: Non-local deep features for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6609–6617 (2017) Luo, Z., Mishra, A., Achkar, A., Eichel, J., Li, S., Jodoin, P.-M.: Non-local deep features for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6609–6617 (2017)
23.
go back to reference Yoon, Y., Jeon, H.-G., Yoo, D., Lee, J.-Y., Kweon, I.S.: Light-field image super-resolution using convolutional neural network. IEEE Signal Process. Lett. 24(6), 848–852 (2017)CrossRef Yoon, Y., Jeon, H.-G., Yoo, D., Lee, J.-Y., Kweon, I.S.: Light-field image super-resolution using convolutional neural network. IEEE Signal Process. Lett. 24(6), 848–852 (2017)CrossRef
24.
go back to reference Shim, G., Park, J., Kweon, I.S.: Robust reference-based super-resolution with similarity-aware deformable convolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8425–8434 (2020) Shim, G., Park, J., Kweon, I.S.: Robust reference-based super-resolution with similarity-aware deformable convolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8425–8434 (2020)
25.
go back to reference Song, H., Xu, W., Liu, D., Liu, B., Liu, Q., Metaxas, D.N.: Multi-stage feature fusion network for video super-resolution. IEEE Trans. Image Process. 30, 2923–2934 (2021)CrossRef Song, H., Xu, W., Liu, D., Liu, B., Liu, Q., Metaxas, D.N.: Multi-stage feature fusion network for video super-resolution. IEEE Trans. Image Process. 30, 2923–2934 (2021)CrossRef
26.
go back to reference Tian, Y., Zhang, Y., Fu, Y., Xu, C.: Tdan: temporally-deformable alignment network for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3360–3369 (2020) Tian, Y., Zhang, Y., Fu, Y., Xu, C.: Tdan: temporally-deformable alignment network for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3360–3369 (2020)
27.
go back to reference Wu, S., Xu, Y.: Dsn: a new deformable subnetwork for object detection. IEEE Trans. Circuits Syst. Video Technol. 30(7), 2057–2066 (2019) Wu, S., Xu, Y.: Dsn: a new deformable subnetwork for object detection. IEEE Trans. Circuits Syst. Video Technol. 30(7), 2057–2066 (2019)
28.
go back to reference Zhang, C., Kim, J.: Object detection with location-aware deformable convolution and backward attention filtering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9452–9461 (2019) Zhang, C., Kim, J.: Object detection with location-aware deformable convolution and backward attention filtering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9452–9461 (2019)
29.
go back to reference Liu, W., Song, Y., Chen, D., He, S., Yu, Y., Yan, T., Hancke, G.P., Lau, R.W.: Deformable object tracking with gated fusion. IEEE Trans. Image Process. 28(8), 3766–3777 (2019)MathSciNetCrossRefMATH Liu, W., Song, Y., Chen, D., He, S., Yu, Y., Yan, T., Hancke, G.P., Lau, R.W.: Deformable object tracking with gated fusion. IEEE Trans. Image Process. 28(8), 3766–3777 (2019)MathSciNetCrossRefMATH
30.
go back to reference Li, F., Zheng, J., Zhang, Y.-F., Liu, N., Jia, W.: Amdfnet: adaptive multi-level deformable fusion network for rgb-d saliency detection. Neurocomputing 465, 141–156 (2021)CrossRef Li, F., Zheng, J., Zhang, Y.-F., Liu, N., Jia, W.: Amdfnet: adaptive multi-level deformable fusion network for rgb-d saliency detection. Neurocomputing 465, 141–156 (2021)CrossRef
31.
go back to reference Zeng, X., Ouyang, W., Yang, B., Yan, J., Wang, X.: Gated bi-directional cnn for object detection. In: European Conference on Computer Vision, pp. 354–369 (2016). Springer Zeng, X., Ouyang, W., Yang, B., Yan, J., Wang, X.: Gated bi-directional cnn for object detection. In: European Conference on Computer Vision, pp. 354–369 (2016). Springer
32.
go back to reference Zhang, L., Dai, J., Lu, H., He, Y., Wang, G.: A bi-directional message passing model for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1741–1750 (2018) Zhang, L., Dai, J., Lu, H., He, Y., Wang, G.: A bi-directional message passing model for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1741–1750 (2018)
33.
go back to reference Gupta, A.K., Seal, A., Khanna, P., Yazidi, A., Krejcar, O.: Gated contextual features for salient object detection. IEEE Trans. Instrum. Meas. PP(99), 1–1 (2021) Gupta, A.K., Seal, A., Khanna, P., Yazidi, A., Krejcar, O.: Gated contextual features for salient object detection. IEEE Trans. Instrum. Meas. PP(99), 1–1 (2021)
34.
go back to reference Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017) Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
35.
go back to reference Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018) Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
36.
go back to reference Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters—improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2017) Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters—improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2017)
37.
go back to reference Máttyus, G., Luo, W., Urtasun, R.: Deeproadmapper: extracting road topology from aerial images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3438–3446 (2017) Máttyus, G., Luo, W., Urtasun, R.: Deeproadmapper: extracting road topology from aerial images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3438–3446 (2017)
38.
go back to reference De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)MathSciNetCrossRefMATH De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)MathSciNetCrossRefMATH
39.
go back to reference Wang, L., Lu, H., Wang, Y., Feng, M., Wang, D., Yin, B., Ruan, X.: Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017) Wang, L., Lu, H., Wang, Y., Feng, M., Wang, D., Yin, B., Ruan, X.: Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017)
40.
go back to reference Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013) Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)
41.
go back to reference Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014) Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)
42.
go back to reference Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015) Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)
43.
go back to reference Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013) Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)
44.
go back to reference Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009). IEEE Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009). IEEE
46.
go back to reference Zhang, P., Wang, D., Lu, H., Wang, H., Ruan, X.: Amulet: aggregating multi-level convolutional features for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 202–211 (2017) Zhang, P., Wang, D., Lu, H., Wang, H., Ruan, X.: Amulet: aggregating multi-level convolutional features for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 202–211 (2017)
47.
go back to reference Liu, N., Han, J., Yang, M.-H.: Picanet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018) Liu, N., Han, J., Yang, M.-H.: Picanet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018)
48.
go back to reference Wang, W., Zhao, S., Shen, J., Hoi, S.C., Borji, A.: Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1448–1457 (2019) Wang, W., Zhao, S., Shen, J., Hoi, S.C., Borji, A.: Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1448–1457 (2019)
49.
go back to reference Li, J., Pan, Z., Liu, Q., Cui, Y., Sun, Y.: Complementarity-aware attention network for salient object detection. IEEE Trans. Cybern. 52(2), 873–886 (2020) Li, J., Pan, Z., Liu, Q., Cui, Y., Sun, Y.: Complementarity-aware attention network for salient object detection. IEEE Trans. Cybern. 52(2), 873–886 (2020)
50.
go back to reference Liu, J., Wang, H., Yan, C., Yuan, M., Su, Y.: Soda\(^2\): salient object detection with structure-adaptive & scale-adaptive receptive field. IEEE Access 8, 204160–204172 (2020)CrossRef Liu, J., Wang, H., Yan, C., Yuan, M., Su, Y.: Soda\(^2\): salient object detection with structure-adaptive & scale-adaptive receptive field. IEEE Access 8, 204160–204172 (2020)CrossRef
51.
go back to reference Zhou, S., Wang, J., Wang, L., Zhang, J., Wang, F., Huang, D., Zheng, N.: Hierarchical and interactive refinement network for edge-preserving salient object detection. IEEE Trans. Image Process. 30, 1–14 (2020)MathSciNetCrossRef Zhou, S., Wang, J., Wang, L., Zhang, J., Wang, F., Huang, D., Zheng, N.: Hierarchical and interactive refinement network for edge-preserving salient object detection. IEEE Trans. Image Process. 30, 1–14 (2020)MathSciNetCrossRef
52.
go back to reference Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2019) Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2019)
53.
go back to reference Luo, H., Han, G., Wu, X., Liu, P., Yang, H., Zhang, X.: Lf3net: leader-follower feature fusing network for fast saliency detection. Neurocomputing 449, 24–37 (2021)CrossRef Luo, H., Han, G., Wu, X., Liu, P., Yang, H., Zhang, X.: Lf3net: leader-follower feature fusing network for fast saliency detection. Neurocomputing 449, 24–37 (2021)CrossRef
54.
go back to reference Sun, L., Chen, Z., Wu, Q.J., Zhao, H., He, W., Yan, X.: Ampnet: average-and max-pool networks for salient object detection. IEEE Trans. Circuits Syst. Video Technol. 31(11), 4321–4333 (2021)CrossRef Sun, L., Chen, Z., Wu, Q.J., Zhao, H., He, W., Yan, X.: Ampnet: average-and max-pool networks for salient object detection. IEEE Trans. Circuits Syst. Video Technol. 31(11), 4321–4333 (2021)CrossRef
55.
go back to reference Li, X., Yang, F., Cheng, H., Liu, W., Shen, D.: Contour knowledge transfer for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 355–370 (2018) Li, X., Yang, F., Cheng, H., Liu, W., Shen, D.: Contour knowledge transfer for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 355–370 (2018)
56.
go back to reference Ren, J., Wang, Z., Ren, J.: Ps-net: progressive selection network for salient object detection. Cogn. Comput. 14(2),794–804 (2022) Ren, J., Wang, Z., Ren, J.: Ps-net: progressive selection network for salient object detection. Cogn. Comput. 14(2),794–804 (2022)
58.
go back to reference Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Metadata
Title
Spatial attention-guided deformable fusion network for salient object detection
Authors
Aiping Yang
Yan Liu
Simeng Cheng
Jiale Cao
Zhong Ji
Yanwei Pang
Publication date
12-08-2023
Publisher
Springer Berlin Heidelberg
Published in
Multimedia Systems / Issue 5/2023
Print ISSN: 0942-4962
Electronic ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-023-01152-4

Other articles of this Issue 5/2023

Multimedia Systems 5/2023 Go to the issue