Skip to main content
Top
Published in: Wireless Personal Communications 2/2017

22-04-2017

Spatial–Temporal Aspects Integrated Probabilistic Intervals Models of Query Generation and Sink Attributes for Energy Efficient WSN

Authors: Pramod Kumar, Ashvini Chaturvedi

Published in: Wireless Personal Communications | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With advancement in device miniaturization and efficacy of network protocols, in a variety of civilian and military applications, wireless sensor networks (WSNs) architectures find room as viable network paradigm. Invariably, in all these WSN architectures, devising suitable algorithms for the efficient network resources utilization has been a challenging task. In certain events driven scenarios, random arrival pattern of queries generation; their geographical distribution (spatial aspect) and generation rate (temporal aspect) are hard to predict precisely. However, these phenomenons could be appropriately modelled using probabilistic framework while yielding adequate accuracy. Usually, in adopted probabilistic models, the associated control parameters are treated as crisp numbers, which fail to encompass uncertainties that are inevitably associated with the modeled parameters. To include impact of such uncertainties, we propose a modified Poisson PMF expressions in that dependency on spatial and temporal aspects is incorporated based on interval concepts. The paper also validates the dynamic fuzzy c-means algorithm as the most efficient clusters formation scheme. Sink node is an important entity/interface between end users and remotely located sensor nodes. To exploit implications of sink nodes attributes, three different case studies are presented. Wherein, we explore the network surveillance by a single stationary/portable sink and four stationary sinks. Obtained simulation results are analyzed for different scenarios which in principle governed by usage of four distinct clustering schemes and sink(s) attribute driven network surveillance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Al-Karaki, J. N., & Kamal, A. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.CrossRef Al-Karaki, J. N., & Kamal, A. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.CrossRef
2.
go back to reference Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking, 11(1), 2–16.CrossRef Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking, 11(1), 2–16.CrossRef
3.
go back to reference Gharavi, H., & Ban, K. (2003). Multihop sensor network design for wide-band communications. Proceedings of the, 91(8), 1221–1234. Gharavi, H., & Ban, K. (2003). Multihop sensor network design for wide-band communications. Proceedings of the, 91(8), 1221–1234.
4.
go back to reference Kwon, T. J., Gerla, M., Varma, V. K., Barton, M., & Hsing, T. R. (2003). Efficient flooding with passive clustering an overhead-free selective forward mechanism for ad hoc/sensor networks. Proceedings of the IEEE, 91(8), 1210–1220.CrossRef Kwon, T. J., Gerla, M., Varma, V. K., Barton, M., & Hsing, T. R. (2003). Efficient flooding with passive clustering an overhead-free selective forward mechanism for ad hoc/sensor networks. Proceedings of the IEEE, 91(8), 1210–1220.CrossRef
5.
go back to reference Kumar, S., Zhao, F., & Shepherd, D. (2002). Collaborative signal and information processing in microsensor networks. IEEE Signal Processing Magazine, 19(2), 13–14.CrossRef Kumar, S., Zhao, F., & Shepherd, D. (2002). Collaborative signal and information processing in microsensor networks. IEEE Signal Processing Magazine, 19(2), 13–14.CrossRef
6.
go back to reference Gharavi, H., & Kumar, S. P. (2003). Scanning the issue-special issue on sensor networks and applications. Proceedings of the IEEE, 91(8), 1151–1153.CrossRef Gharavi, H., & Kumar, S. P. (2003). Scanning the issue-special issue on sensor networks and applications. Proceedings of the IEEE, 91(8), 1151–1153.CrossRef
7.
go back to reference Niu, R., Varshney, P. K., Moore, M. H., & Klamer, D. (2004). Decision fusion in a wireless sensor network with a large number of sensors. In Proceedings of the 7th IEEE international conference on information fusion (ICIF’04), Stockholm, June–July 2004. Niu, R., Varshney, P. K., Moore, M. H., & Klamer, D. (2004). Decision fusion in a wireless sensor network with a large number of sensors. In Proceedings of the 7th IEEE international conference on information fusion (ICIF’04), Stockholm, June–July 2004.
8.
go back to reference Wang, Y., Li, F., & Fang, F. (2010). Poisson versus Gaussian distribution for object tracking in wireless sensor networks. In IEEE 2nd International Workshop on Intelligent Systems and Applications (ISA), 2010. Wang, Y., Li, F., & Fang, F. (2010). Poisson versus Gaussian distribution for object tracking in wireless sensor networks. In IEEE  2nd International Workshop on Intelligent Systems and Applications (ISA), 2010.
9.
go back to reference Yu, Y. (2010). HIBOR: An efficient approach to sequence pattern query processing in wireless sensor networks. In IET International Conference on Wireless Sensor Network (pp. 161–166). 15–17, 2010. Yu, Y. (2010). HIBOR: An efficient approach to sequence pattern query processing in wireless sensor networks. In IET International Conference on Wireless Sensor Network (pp. 161–166). 15–17, 2010.
10.
go back to reference Liu, X., Zhao, H., & Li, X. (2011).EPC: Energy-aware probability-based clustering algorithm for correlated data gathering in wireless sensor networks. In IEEE International Conference on Advanced Information Networking and Applications (pp. 419–426). Liu, X., Zhao, H., & Li, X. (2011).EPC: Energy-aware probability-based clustering algorithm for correlated data gathering in wireless sensor networks. In IEEE International Conference on Advanced Information Networking and Applications (pp. 419–426).
11.
go back to reference Mohamed, M. M. A., & Khokhar, A. A. (2011). Dynamic indexing system for spatio-temporal queries in wireless sensor networks. In 12th IEEE International Conference on Mobile Data Management (MDM) (Vol. 2, pp. 35–37). Mohamed, M. M. A., & Khokhar, A. A. (2011). Dynamic indexing system for spatio-temporal queries in wireless sensor networks. In 12th IEEE International Conference on Mobile Data Management (MDM) (Vol. 2, pp. 35–37).
12.
go back to reference Degirmenci, G., Kharoufeh, J. P., & Prokopyev, O. A. (2014). Maximizing the lifetime of query-based wireless sensor networks. Transactions on Sensor Networks (TOSN), 10(4), 56. Degirmenci, G., Kharoufeh, J. P., & Prokopyev, O. A. (2014). Maximizing the lifetime of query-based wireless sensor networks. Transactions on Sensor Networks (TOSN), 10(4), 56.
13.
go back to reference Munir, A., Antoon, J., & Gordon-Ross A. (2015). Modeling and analysis of fault detection and fault tolerance in wireless sensor networks. Transactions on Embedded Computing Systems (TECS), 14(1), Article 3. Munir, A., Antoon, J., & Gordon-Ross A. (2015). Modeling and analysis of fault detection and fault tolerance in wireless sensor networks. Transactions on Embedded Computing Systems (TECS), 14(1), Article 3.
14.
go back to reference Yoon, S., & Shahabi, C. (2007)“The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. Transactions on Sensor Networks (TOSN), 3(1), Article No. 3. Yoon, S., & Shahabi, C. (2007)“The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. Transactions on Sensor Networks (TOSN), 3(1), Article No. 3.
15.
go back to reference Dutta, P., Grimmer, M., Arora, A., Bibyk, S., & Culler, D. (2005). Design of a wireless sensor network platform for detecting rare, random, and ephemeral events. In Proceedings of the 4th international symposium on Information processing in sensor networks (IPSN’05), No. 70. Dutta, P., Grimmer, M., Arora, A., Bibyk, S., & Culler, D. (2005). Design of a wireless sensor network platform for detecting rare, random, and ephemeral events. In Proceedings of the 4th international symposium on Information processing in sensor networks (IPSN’05), No. 70.
16.
go back to reference Deshpande, A., Guestrin, C., Madden, S. R., Hellerstein, J. M., & Hong, W. (2005). Model-based approximate querying in sensor networks. The VLDB Journal, 14(4), 417–443.CrossRef Deshpande, A., Guestrin, C., Madden, S. R., Hellerstein, J. M., & Hong, W. (2005). Model-based approximate querying in sensor networks. The VLDB Journal, 14(4), 417–443.CrossRef
17.
go back to reference Demirbas, M., Xuming, L., & Singla, P. (2002). An in-network querying framework for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(8), 1202–1215.CrossRef Demirbas, M., Xuming, L., & Singla, P. (2002). An in-network querying framework for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(8), 1202–1215.CrossRef
18.
go back to reference Huang, H., Hartman, J. H., & Hurst, T. N. (2007). Efficient and robust query processing for mobile wireless sensor networks. International Journal of Sensor Networks, 2(1/2), 99–107.CrossRef Huang, H., Hartman, J. H., & Hurst, T. N. (2007). Efficient and robust query processing for mobile wireless sensor networks. International Journal of Sensor Networks, 2(1/2), 99–107.CrossRef
19.
go back to reference Alefeld, G., & Herzberger, J. (1983). Introduction to interval computations. New York: Academic Press.MATH Alefeld, G., & Herzberger, J. (1983). Introduction to interval computations. New York: Academic Press.MATH
20.
go back to reference Schreiber, F. A. (2007). Automatic generation of sensor queries in a WSN for environmental monitoring. In Proceedings of ISCRAM2007 (pp. 245–254). Schreiber, F. A. (2007). Automatic generation of sensor queries in a WSN for environmental monitoring. In Proceedings of ISCRAM2007 (pp. 245–254).
21.
go back to reference KeweiSha and Weisong Shi. (2005). Modeling the lifetime of wireless sensor networks. Sensor Letters, 3, 1–10.CrossRef KeweiSha and Weisong Shi. (2005). Modeling the lifetime of wireless sensor networks. Sensor Letters, 3, 1–10.CrossRef
22.
go back to reference Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture directions for networked sensors. Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems, 28(5), 93–104.CrossRef Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture directions for networked sensors. Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems, 28(5), 93–104.CrossRef
23.
go back to reference Yang, P. (2004). Spatial channel characterization for cognitive radios. Berkeley, CA: Univ. Calif. Berkeley Press. Yang, P. (2004). Spatial channel characterization for cognitive radios. Berkeley, CA: Univ. Calif. Berkeley Press.
24.
go back to reference Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(6), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(6), 13–18.CrossRef
25.
go back to reference Kumar, P., & Chaturvedi, A. (2015). Sink attributes analysis for energy efficient operations of wireless sensor networks under randomly varying temporal and spatial aspects of query generation. International Journal of Electronics and Communications, 69(7), 1058–1069.CrossRef Kumar, P., & Chaturvedi, A. (2015). Sink attributes analysis for energy efficient operations of wireless sensor networks under randomly varying temporal and spatial aspects of query generation. International Journal of Electronics and Communications, 69(7), 1058–1069.CrossRef
Metadata
Title
Spatial–Temporal Aspects Integrated Probabilistic Intervals Models of Query Generation and Sink Attributes for Energy Efficient WSN
Authors
Pramod Kumar
Ashvini Chaturvedi
Publication date
22-04-2017
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4272-6

Other articles of this Issue 2/2017

Wireless Personal Communications 2/2017 Go to the issue