Skip to main content
Top
Published in: Wireless Networks 4/2022

21-03-2022 | Original Paper

Spectrum selection and decision using neural and fuzzy optimization approaches

Authors: R. Raja Guru, K. Vimala Devi, P. Marichamy

Published in: Wireless Networks | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In Cognitive Radio Network, after sensing process, the selection and decision for a reliable channel from the list of free channels is important for assignment to Cognitive Users (CUs) for communication with Quality of Service (QoS). In this paper a consistent spectrum selection and decision scheme with two-fold neural network has been proposed for selection and decision process and its performance is compared with the schemes of Genetic algorithm and Back Propagation Neural Network (BPNN). BPNN- Adaptive Neuro Fuzzy Inference System (ANFIS) is a two-fold spectrum selection and decision approach which combines both BPNN and ANFIS techniques. A channel with the required QoS is selected based on the parameters such as Primary User (PU) states, signal strength, spectrum demand, velocity and distance. The simulation analysis shows that the BPNN–ANFIS technique reduces probability of blocking and dropping and therefore the accuracy of reliable channel selection obtained for the CUs use is more than 92%. The blocking probability of the proposed technique ranges from 1 to 3% which is much lower than the Genetic Algorithm (9–50%) and BPNN (8–40%). The maximum dropping probability of the proposed technique is only 4% and this is lower compared to 20% dropping in the other two techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmadfard, A., Jamshidi, A., & Keshavarz-Haddad, A. (2017). Probabilistic spectrum sensing data falsification attack in cognitive radio networks. Signal Processing, 137, 1–9.CrossRef Ahmadfard, A., Jamshidi, A., & Keshavarz-Haddad, A. (2017). Probabilistic spectrum sensing data falsification attack in cognitive radio networks. Signal Processing, 137, 1–9.CrossRef
2.
go back to reference Bradonjić, M., & Lazos, L. (2012). Graph-based criteria for spectrum-aware clustering in cognitive radio networks. Ad Hoc Networks, 10(1), 75–94.CrossRef Bradonjić, M., & Lazos, L. (2012). Graph-based criteria for spectrum-aware clustering in cognitive radio networks. Ad Hoc Networks, 10(1), 75–94.CrossRef
3.
go back to reference Tahir, M., Habaebi, M. H., & Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU-International Journal of Electronics and Communications, 77, 139–148. Tahir, M., Habaebi, M. H., & Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU-International Journal of Electronics and Communications, 77, 139–148.
4.
go back to reference Kieu-Xuan, T., & Koo, I. (2013). A cooperative spectrum sensing scheme using adaptive fuzzy system for cognitive radio networks. Information Sciences, 220, 102–109.CrossRef Kieu-Xuan, T., & Koo, I. (2013). A cooperative spectrum sensing scheme using adaptive fuzzy system for cognitive radio networks. Information Sciences, 220, 102–109.CrossRef
5.
go back to reference Kapoor, G., & Rajawat, K. (2015). Outlier-aware cooperative spectrum sensing in cognitive radio networks. Physical Communication, 17, 118–127.CrossRef Kapoor, G., & Rajawat, K. (2015). Outlier-aware cooperative spectrum sensing in cognitive radio networks. Physical Communication, 17, 118–127.CrossRef
6.
go back to reference Haghighat, M., & Sadough, S. M. S. (2014). Cooperative spectrum sensing for cognitive radio networks in the presence of smart malicious users. AEU-International Journal of Electronics and Communications, 68(6), 520–527. Haghighat, M., & Sadough, S. M. S. (2014). Cooperative spectrum sensing for cognitive radio networks in the presence of smart malicious users. AEU-International Journal of Electronics and Communications, 68(6), 520–527.
7.
go back to reference Paul, A., & Maity, S. P. (2016). Kernel fuzzy c-means clustering on energy detection based cooperative spectrum sensing. Digital Communications and Networks, 2(4), 196–205.CrossRef Paul, A., & Maity, S. P. (2016). Kernel fuzzy c-means clustering on energy detection based cooperative spectrum sensing. Digital Communications and Networks, 2(4), 196–205.CrossRef
8.
go back to reference So, J., & Kwon, T. (2016). Limited reporting-based cooperative spectrum sensing for multiband cognitive radio networks. AEU-International Journal of Electronics and Communications, 70(4), 386–397. So, J., & Kwon, T. (2016). Limited reporting-based cooperative spectrum sensing for multiband cognitive radio networks. AEU-International Journal of Electronics and Communications, 70(4), 386–397.
9.
go back to reference Maity, S. P., Chatterjee, S., & Acharya, T. (2016). On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Processing, 49, 104–115.CrossRef Maity, S. P., Chatterjee, S., & Acharya, T. (2016). On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Processing, 49, 104–115.CrossRef
10.
go back to reference Jiao, C. H., Wang, K. R., & Shuo, M. E. N. (2011). Cooperative blind spectrum sensing using autocorrelation matrix. The Journal of China Universities of Posts and Telecommunications, 18(3), 47–53.CrossRef Jiao, C. H., Wang, K. R., & Shuo, M. E. N. (2011). Cooperative blind spectrum sensing using autocorrelation matrix. The Journal of China Universities of Posts and Telecommunications, 18(3), 47–53.CrossRef
11.
go back to reference Jiang, D., Wang, Y., Yao, C., & Han, Y. (2015). An effective dynamic spectrum access algorithm for multi-hop cognitive wireless networks. Computer Networks, 84, 1–16.CrossRef Jiang, D., Wang, Y., Yao, C., & Han, Y. (2015). An effective dynamic spectrum access algorithm for multi-hop cognitive wireless networks. Computer Networks, 84, 1–16.CrossRef
12.
go back to reference Roy, S. D., Kundu, S., Ferrari, G., & Raheli, R. (2013). On spectrum sensing in cognitive radio CDMA networks with beam forming. Physical Communication, 9, 73–87.CrossRef Roy, S. D., Kundu, S., Ferrari, G., & Raheli, R. (2013). On spectrum sensing in cognitive radio CDMA networks with beam forming. Physical Communication, 9, 73–87.CrossRef
13.
go back to reference Suguna, R., & Rathinasabapathy, V. (2019). An SoC architecture for energy detection based spectrum sensing using low latency column bit compressed (LLCBC) MAC in cognitive radio wireless sensor networks. Microprocessors and Microsystems, 69, 159–167.CrossRef Suguna, R., & Rathinasabapathy, V. (2019). An SoC architecture for energy detection based spectrum sensing using low latency column bit compressed (LLCBC) MAC in cognitive radio wireless sensor networks. Microprocessors and Microsystems, 69, 159–167.CrossRef
14.
go back to reference Anand, S., & Chandramouli, R. (2010). A network flow based approach for network selection in dynamic spectrum access networks. Information processing letters, 110(3), 104–107.MathSciNetCrossRef Anand, S., & Chandramouli, R. (2010). A network flow based approach for network selection in dynamic spectrum access networks. Information processing letters, 110(3), 104–107.MathSciNetCrossRef
15.
go back to reference Khalunezhad, A., Moghim, N., & Ghahfarokhi, B. S. (2018). Trust-based multi-hop cooperative spectrum sensing in cognitive radio networks. Journal of information security and applications, 42, 29–35.CrossRef Khalunezhad, A., Moghim, N., & Ghahfarokhi, B. S. (2018). Trust-based multi-hop cooperative spectrum sensing in cognitive radio networks. Journal of information security and applications, 42, 29–35.CrossRef
16.
go back to reference Yang, C., Fu, Y., Zhang, Y., Yu, R., & Liu, Y. (2014). An efficient hybrid spectrum access algorithm in OFDM-based wideband cognitive radio networks. Neuro computing, 125, 33–40. Yang, C., Fu, Y., Zhang, Y., Yu, R., & Liu, Y. (2014). An efficient hybrid spectrum access algorithm in OFDM-based wideband cognitive radio networks. Neuro computing, 125, 33–40.
17.
go back to reference Maksoud, I. A., Rabia, S. I., & Algundi, M. A. (2017). A discrete- time multi-server queueing model for opportunistic spectrum access systems. Performance Evaluation, 109, 1–7.CrossRef Maksoud, I. A., Rabia, S. I., & Algundi, M. A. (2017). A discrete- time multi-server queueing model for opportunistic spectrum access systems. Performance Evaluation, 109, 1–7.CrossRef
18.
go back to reference Zhang, W., & Yeo, C. K. (2012). Joint iterative algorithm for optimal cooperative spectrum sensing in cognitive radio networks. Computer Communications, 36(1), 80–89.CrossRef Zhang, W., & Yeo, C. K. (2012). Joint iterative algorithm for optimal cooperative spectrum sensing in cognitive radio networks. Computer Communications, 36(1), 80–89.CrossRef
19.
go back to reference Monteiro, A., Souto, E., Pazzi, R., & Nogueira, M. (2019). Context-aware network selection in heterogeneous wireless networks. Computer Communications, 135, 1–15.CrossRef Monteiro, A., Souto, E., Pazzi, R., & Nogueira, M. (2019). Context-aware network selection in heterogeneous wireless networks. Computer Communications, 135, 1–15.CrossRef
20.
go back to reference Althunibat, S., Di Renzo, M., & Granelli, F. (2014). Cooperative spectrum sensing for cognitive radio networks under limited time constraints. Computer Communications, 43, 55–63.CrossRef Althunibat, S., Di Renzo, M., & Granelli, F. (2014). Cooperative spectrum sensing for cognitive radio networks under limited time constraints. Computer Communications, 43, 55–63.CrossRef
21.
go back to reference Rasheed, T., Rashdi, A., & Akhtar, A. N. (2018). Cooperative spectrum sensing using fuzzy logic for cognitive radio network. In 2018 advances in science and engineering technology international conferences (ASET). IEEE, pp. 1–6. Rasheed, T., Rashdi, A., & Akhtar, A. N. (2018). Cooperative spectrum sensing using fuzzy logic for cognitive radio network. In 2018 advances in science and engineering technology international conferences (ASET). IEEE, pp. 1–6.
22.
go back to reference Zhiqiang, L., Taifu, L., Peng, C., & Shilun, Z. (2018). A multi-objective robust optimization scheme for reducing optimization performance deterioration caused by fluctuation of decision parameters in chemical processes. Computers and Chemical Engineering, 119, 1–12.CrossRef Zhiqiang, L., Taifu, L., Peng, C., & Shilun, Z. (2018). A multi-objective robust optimization scheme for reducing optimization performance deterioration caused by fluctuation of decision parameters in chemical processes. Computers and Chemical Engineering, 119, 1–12.CrossRef
23.
go back to reference Xue, X. (2017). Prediction of daily diffuse solar radiation using artificial neural networks. International Journal of Hydrogen Energy, 42(47), 28214–28221.CrossRef Xue, X. (2017). Prediction of daily diffuse solar radiation using artificial neural networks. International Journal of Hydrogen Energy, 42(47), 28214–28221.CrossRef
24.
go back to reference Rajaguru, R., & Vimaladevi, K. (2016). Performance analysis of radio access techniques in self-configured next generation wireless networks. Advances in Natural and Applied Sciences, 10(10 SE), 232–242. Rajaguru, R., & Vimaladevi, K. (2016). Performance analysis of radio access techniques in self-configured next generation wireless networks. Advances in Natural and Applied Sciences, 10(10 SE), 232–242.
25.
go back to reference Rajaguru, R., Devi, K. V., & Marichamy, P. (2020). A hybrid spectrum sensing approach to select suitable spectrum band for cognitive users. Computer Networks, 180, 107387.CrossRef Rajaguru, R., Devi, K. V., & Marichamy, P. (2020). A hybrid spectrum sensing approach to select suitable spectrum band for cognitive users. Computer Networks, 180, 107387.CrossRef
26.
go back to reference Lou, H., Chung, J. I., Kiang, Y. H., Xiao, L. Y., & Hageman, M. J. (2019). The application of machine learning algorithms in understanding the effect of core/shell technique on improving powder compactability. International Journal of Pharmaceutics, 555, 368–379.CrossRef Lou, H., Chung, J. I., Kiang, Y. H., Xiao, L. Y., & Hageman, M. J. (2019). The application of machine learning algorithms in understanding the effect of core/shell technique on improving powder compactability. International Journal of Pharmaceutics, 555, 368–379.CrossRef
27.
go back to reference Rong, Y., Zhang, Z., Zhang, G., Yue, C., Gu, Y., Huang, Y., & Shao, X. (2015). Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Optics and Lasers in Engineering, 67, 94–104.CrossRef Rong, Y., Zhang, Z., Zhang, G., Yue, C., Gu, Y., Huang, Y., & Shao, X. (2015). Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Optics and Lasers in Engineering, 67, 94–104.CrossRef
28.
go back to reference Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication, 28, 130–137.CrossRef Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication, 28, 130–137.CrossRef
29.
go back to reference Liu, X., & Zhang, X. (2018). Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer. IEEE Internet of Things Journal, 6(4), 5971–5980.CrossRef Liu, X., & Zhang, X. (2018). Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer. IEEE Internet of Things Journal, 6(4), 5971–5980.CrossRef
30.
go back to reference Liu, X., & Zhang, X. (2019). NOMA-based resource allocation for cluster-based cognitive industrial internet of things. IEEE Transactions on Industrial Informatics, 16(8), 5379–5388.CrossRef Liu, X., & Zhang, X. (2019). NOMA-based resource allocation for cluster-based cognitive industrial internet of things. IEEE Transactions on Industrial Informatics, 16(8), 5379–5388.CrossRef
31.
go back to reference Liu, X., Zhai, X. B., Lu, W., & Wu, C. (2019). QoS-guarantee resource allocation for multibeam satellite industrial internet of things with NOMA. IEEE Transactions on Industrial Informatics, 17(3), 2052–2061.CrossRef Liu, X., Zhai, X. B., Lu, W., & Wu, C. (2019). QoS-guarantee resource allocation for multibeam satellite industrial internet of things with NOMA. IEEE Transactions on Industrial Informatics, 17(3), 2052–2061.CrossRef
Metadata
Title
Spectrum selection and decision using neural and fuzzy optimization approaches
Authors
R. Raja Guru
K. Vimala Devi
P. Marichamy
Publication date
21-03-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2022
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02932-y

Other articles of this Issue 4/2022

Wireless Networks 4/2022 Go to the issue