Skip to main content
Top
Published in: Microsystem Technologies 7/2020

26-06-2019 | Technical Paper

SSTRNG: self starved feedback SRAM based true random number generator using quantum cellular automata

Authors: Arindam Sadhu, Kunal Das, Debashis De, Maitreyi Ray Kanjilal

Published in: Microsystem Technologies | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The information are need to modulate using irreproducible and unpredictable digital bit stream to get a secure digital communication systems. Hence, True random number generator (TRNG) is a significant aspirant in digital circuit to yield unpredictable digital bit stream. In this assignment self starved feedback SRAM based TRNG is proposed in quantum cellular automata (QCA) technology. Moreover, QCA technology is adopted to design TRNG components due to its features like ultra low power dissipation, low area and ultra high operating frequency. The proposed TRNG is comprised of self starved feedback circuit and floating clock generator. Again, the basis of self starved feedback circuit is a single bit QCA SRAM cell, which extracts the random digital bit. Furthermore, to enhance the randomness, floating clock generator is implemented across self starved feedback circuits input. The functionality of proposed TRNG is accomplished through QCA Designer tool and its architecture is also passed NIST statistical test of randomness. Hence proposed 8 bit TRNG can be interpreted as a novel contender for security applications due to its 14.82 GHz operating frequency, 0.36 μm2 area, latency of 1 QCA clock cycle, 28.53 meV average power dissipation and high tail probability of NIST test battery report in QCA technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abutaleb MM (2018) A novel true random number generator based on QCA nanocomputing. Nano Commun Netw 17:14–20CrossRef Abutaleb MM (2018) A novel true random number generator based on QCA nanocomputing. Nano Commun Netw 17:14–20CrossRef
go back to reference Amaki T, Hashimoto M, Onoye T (2014) A process and temperature tolerant oscillator-based true random number generator. IEICE Trans Fundam Electron Commun Comput 97(12):2393–2399CrossRef Amaki T, Hashimoto M, Onoye T (2014) A process and temperature tolerant oscillator-based true random number generator. IEICE Trans Fundam Electron Commun Comput 97(12):2393–2399CrossRef
go back to reference Bayon P, Bossuet L, Aubert A, Fischer V, Poucheret F, Robisson B, Maurine P (2012) Contactless electromagnetic active attack on ring oscillator based true random number generator. COSADE 7275:151–166 Bayon P, Bossuet L, Aubert A, Fischer V, Poucheret F, Robisson B, Maurine P (2012) Contactless electromagnetic active attack on ring oscillator based true random number generator. COSADE 7275:151–166
go back to reference Bucci M, Luzzi R (2008) Fully digital random bit generators for cryptographic applications. IEEE Trans Circuits Syst I Regul Pap 55(3):861–875MathSciNetCrossRef Bucci M, Luzzi R (2008) Fully digital random bit generators for cryptographic applications. IEEE Trans Circuits Syst I Regul Pap 55(3):861–875MathSciNetCrossRef
go back to reference Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M (2003) A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans Comput 52:403–409CrossRef Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M (2003) A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans Comput 52:403–409CrossRef
go back to reference Das JC, De D (2016a) User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication. Arab J Sci Eng 41(3):773–784MathSciNetMATHCrossRef Das JC, De D (2016a) User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication. Arab J Sci Eng 41(3):773–784MathSciNetMATHCrossRef
go back to reference Das JC, De D (2016b) Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front Inf Technol Electron Eng 17(3):224–236CrossRef Das JC, De D (2016b) Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front Inf Technol Electron Eng 17(3):224–236CrossRef
go back to reference Das JC, De D (2016c) Novel low power reversible encoder design using quantum-dot cellular automata. J Nanoelectron Optoelectron 11(4):450–458CrossRef Das JC, De D (2016c) Novel low power reversible encoder design using quantum-dot cellular automata. J Nanoelectron Optoelectron 11(4):450–458CrossRef
go back to reference Das JC, De D (2017a) Nanocommunication network design using QCA reversible crossbar switch. Nano Commun Netw 13:20–33CrossRef Das JC, De D (2017a) Nanocommunication network design using QCA reversible crossbar switch. Nano Commun Netw 13:20–33CrossRef
go back to reference Das JC, De D (2017b) Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst Technol 23(9):4155–4168CrossRef Das JC, De D (2017b) Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst Technol 23(9):4155–4168CrossRef
go back to reference Das JC, De D (2017c) Reversible binary subtractor design using quantum dot-cellular automata. Front Inf Technol Electron Eng 18(9):1416–1429CrossRef Das JC, De D (2017c) Reversible binary subtractor design using quantum dot-cellular automata. Front Inf Technol Electron Eng 18(9):1416–1429CrossRef
go back to reference Das JC, De D (2018a) QCA based design of Polar encoder circuit for nano communication network. Nano Commun Netw 18:82–92CrossRef Das JC, De D (2018a) QCA based design of Polar encoder circuit for nano communication network. Nano Commun Netw 18:82–92CrossRef
go back to reference Das JC, De D (2018b) Computational fidelity in reversible quantum-dot cellular automata channel routing under thermal randomness. Nano Commun Netw 18:17–26CrossRef Das JC, De D (2018b) Computational fidelity in reversible quantum-dot cellular automata channel routing under thermal randomness. Nano Commun Netw 18:17–26CrossRef
go back to reference Das JC, De D (2018c) Design of single layer banyan network using quantum-dot cellular automata for nanocommunication. Optik 172:892–907CrossRef Das JC, De D (2018c) Design of single layer banyan network using quantum-dot cellular automata for nanocommunication. Optik 172:892–907CrossRef
go back to reference Das JC, De D (2018d) QCA based secure nanocommunication block cipher design based on electronic code book. Malays J Comput Sci 31(2):130–142CrossRef Das JC, De D (2018d) QCA based secure nanocommunication block cipher design based on electronic code book. Malays J Comput Sci 31(2):130–142CrossRef
go back to reference Das et al (2017) Reversible gate-based cipher text using QCA for nanocommunication. Nanomater Energy 6(1):7–16CrossRef Das et al (2017) Reversible gate-based cipher text using QCA for nanocommunication. Nanomater Energy 6(1):7–16CrossRef
go back to reference Das et al (2019) QCA based error detection circuit for nano communication network. IEEE Access 7:67355–67366CrossRef Das et al (2019) QCA based error detection circuit for nano communication network. IEEE Access 7:67355–67366CrossRef
go back to reference Debnath B, Das JC, De D (2017a) Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circuits Devices Syst 11(1):58–67CrossRef Debnath B, Das JC, De D (2017a) Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circuits Devices Syst 11(1):58–67CrossRef
go back to reference Debnath B, Das JC, De D (2017b) Fingerprint authentication using QCA technology. In: 2017 devices for integrated circuit (DevIC). IEEE, pp 125–130 Debnath B, Das JC, De D (2017b) Fingerprint authentication using QCA technology. In: 2017 devices for integrated circuit (DevIC). IEEE, pp 125–130
go back to reference Debnath B, Das JC, De D (2018) Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun Netw 15:41–58CrossRef Debnath B, Das JC, De D (2018) Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun Netw 15:41–58CrossRef
go back to reference Frost SE, Dysart TJ, Kogge PM, Lent CS (2004) Carbon nanotubes for quantum-dot cellular automata clocking. In: 4th IEEE Conference on Nanotechnology. IEEE, Munich, Germany, pp 171–173 Frost SE, Dysart TJ, Kogge PM, Lent CS (2004) Carbon nanotubes for quantum-dot cellular automata clocking. In: 4th IEEE Conference on Nanotechnology. IEEE, Munich, Germany, pp 171–173
go back to reference Gaviria Rojas W, McMorrow J, Geier M, Tang Q, Kim C, Marks T, Hersam M (2017) Solution-processed carbon nanotube true random number generator. Nano Lett 17(8):4976–4981CrossRef Gaviria Rojas W, McMorrow J, Geier M, Tang Q, Kim C, Marks T, Hersam M (2017) Solution-processed carbon nanotube true random number generator. Nano Lett 17(8):4976–4981CrossRef
go back to reference Hedayatpour S, Chuprat S (2011) Random number generator based on transformed image data source. Adv Comput Commun Control Autom 121:457–464CrossRef Hedayatpour S, Chuprat S (2011) Random number generator based on transformed image data source. Adv Comput Commun Control Autom 121:457–464CrossRef
go back to reference Holcomb D, Burleson W, Fu K (2009) Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans Comput 58(9):1198–1210MathSciNetMATHCrossRef Holcomb D, Burleson W, Fu K (2009) Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans Comput 58(9):1198–1210MathSciNetMATHCrossRef
go back to reference Holman W, Connelly J, Dowlatabadi A (1997) An integrated analog/digital random noise source. IEEE Trans Circuits Syst I Fundam Theory Appl 44:521–528CrossRef Holman W, Connelly J, Dowlatabadi A (1997) An integrated analog/digital random noise source. IEEE Trans Circuits Syst I Fundam Theory Appl 44:521–528CrossRef
go back to reference Keikha A, Dadkhah C, Tehrani M, Navi K (2011) A novel design of a random generator circuit in QCA. Int J Comput Appl 35(1):30–36 Keikha A, Dadkhah C, Tehrani M, Navi K (2011) A novel design of a random generator circuit in QCA. Int J Comput Appl 35(1):30–36
go back to reference Kim K, Wu K, Karri R (2007) The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput Aided Des Integr Circuits Syst 26(1):176–183CrossRef Kim K, Wu K, Karri R (2007) The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput Aided Des Integr Circuits Syst 26(1):176–183CrossRef
go back to reference Lent C, Tougaw P, Porod W, Bernstein G (1993) Quantum cellular automata. Nanotechnology 4(1):49–57CrossRef Lent C, Tougaw P, Porod W, Bernstein G (1993) Quantum cellular automata. Nanotechnology 4(1):49–57CrossRef
go back to reference Lim D, Lee J, Gassend B, Suh G, van Dijk M, Devadas S (2005) Extracting secret keys from integrated circuits. IEEE Trans Very Large Scale Integr Syst 13(10):1200–1205CrossRef Lim D, Lee J, Gassend B, Suh G, van Dijk M, Devadas S (2005) Extracting secret keys from integrated circuits. IEEE Trans Very Large Scale Integr Syst 13(10):1200–1205CrossRef
go back to reference Mathew S, Srinivasan S, Anders M, Kaul H, Hsu S, Sheikh F, Krishnamurthy R (2012) 2.4 Gbps, 7 mW all-digital PVT-variation tolerant true random number generator for 45 nm CMOS high-performance microprocessors. IEEE J Solid State Circuits 47(11):2807–2821CrossRef Mathew S, Srinivasan S, Anders M, Kaul H, Hsu S, Sheikh F, Krishnamurthy R (2012) 2.4 Gbps, 7 mW all-digital PVT-variation tolerant true random number generator for 45 nm CMOS high-performance microprocessors. IEEE J Solid State Circuits 47(11):2807–2821CrossRef
go back to reference National Institute of Standards and Technology (NIST) (2010) A statistical test suite for random and pseudorandom number generators for cryptographic applications, Special Publication 800-22 National Institute of Standards and Technology (NIST) (2010) A statistical test suite for random and pseudorandom number generators for cryptographic applications, Special Publication 800-22
go back to reference Purkayastha et al (2016a) Quantum-dot cellular automata based autonomous system for future nano-communication device. Quantum Matter 5(6):725–731CrossRef Purkayastha et al (2016a) Quantum-dot cellular automata based autonomous system for future nano-communication device. Quantum Matter 5(6):725–731CrossRef
go back to reference Purkayastha T, De D, Das K (2016b) A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata. Microprocess Microsyst 45:32–44CrossRef Purkayastha T, De D, Das K (2016b) A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata. Microprocess Microsyst 45:32–44CrossRef
go back to reference Qadri SUR, Bangi ZA, Tariq Banday M, Mohiuddin Bhat G (2019) Design and implementation of cryptographic element with low power dissipation in QCA. Nanomater Energy 8(1):1–11CrossRef Qadri SUR, Bangi ZA, Tariq Banday M, Mohiuddin Bhat G (2019) Design and implementation of cryptographic element with low power dissipation in QCA. Nanomater Energy 8(1):1–11CrossRef
go back to reference Qu Y, Han J, Cockburn B, Pedrycz W, Zhang Y, Zhao W (2017) A true random number generator based on parallel STT-MTJs. In: Proceedings of the design, automation and test in Europe conference and exhibition (DATE), pp 606–609 Qu Y, Han J, Cockburn B, Pedrycz W, Zhang Y, Zhao W (2017) A true random number generator based on parallel STT-MTJs. In: Proceedings of the design, automation and test in Europe conference and exhibition (DATE), pp 606–609
go back to reference Rührmair U, Jaeger C, Bator M, Stutzmann M, Lugli P, Csaba G (2011) Applications of high-capacity crossbar memories in cryptography. IEEE Trans Nanotechnol 10(3):489–498CrossRef Rührmair U, Jaeger C, Bator M, Stutzmann M, Lugli P, Csaba G (2011) Applications of high-capacity crossbar memories in cryptography. IEEE Trans Nanotechnol 10(3):489–498CrossRef
go back to reference Schellekens D, Preneel B, Verbauwhede I (2006) FPGA vendor agnostic true random number generator. In: International conference on field programmable logic and applications (FPL 2006), pp 1–6 Schellekens D, Preneel B, Verbauwhede I (2006) FPGA vendor agnostic true random number generator. In: International conference on field programmable logic and applications (FPL 2006), pp 1–6
go back to reference Srivastava S, Asthana A, Bhanja S, Sarkar S (2011), QCAPro-an error power estimation tool for QCA circuit design. In: IEEE international symposium of circuits systems, pp 2377–2380 Srivastava S, Asthana A, Bhanja S, Sarkar S (2011), QCAPro-an error power estimation tool for QCA circuit design. In: IEEE international symposium of circuits systems, pp 2377–2380
go back to reference Sunar B, Martin W, Stinson D (2007) A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans Comput 56(1):109–119MathSciNetMATHCrossRef Sunar B, Martin W, Stinson D (2007) A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans Comput 56(1):109–119MathSciNetMATHCrossRef
go back to reference Tokunaga C, Blaauw D, Mudge T (2008) True random number generator with a metastability-based qualitycontrol. IEEE J Solid State Circuits 43(1):78–85CrossRef Tokunaga C, Blaauw D, Mudge T (2008) True random number generator with a metastability-based qualitycontrol. IEEE J Solid State Circuits 43(1):78–85CrossRef
go back to reference Tougaw P, Lent C (1996) Dynamic behavior of quantum cellular automata. J Appl Phys 80(8):4722–4736CrossRef Tougaw P, Lent C (1996) Dynamic behavior of quantum cellular automata. J Appl Phys 80(8):4722–4736CrossRef
go back to reference Walus K, Dysart T, Jullien G, Budiman R (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3:26–31CrossRef Walus K, Dysart T, Jullien G, Budiman R (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3:26–31CrossRef
go back to reference Wang Y, Cai H, Naviner L, Klein J, Yang J, Zhao W (2016) A novel circuit design of true random number generator using magnetic tunnel junction. In: IEEE/ACM international symposium on nanoscale architectures (NANOARCH), pp 123–128 Wang Y, Cai H, Naviner L, Klein J, Yang J, Zhao W (2016) A novel circuit design of true random number generator using magnetic tunnel junction. In: IEEE/ACM international symposium on nanoscale architectures (NANOARCH), pp 123–128
go back to reference Wold K, Tan C (2009) Analysis and enhancement of random number generator in FPGA based on oscillator rings. In: International journal of reconfigurable computing, p 4 Wold K, Tan C (2009) Analysis and enhancement of random number generator in FPGA based on oscillator rings. In: International journal of reconfigurable computing, p 4
go back to reference Zhang L, Kong Z, Chang C (2013) PCKGen: a phase change memory based cryptographic key generator. In: Proceedings of IEEE international symposium on circuits and systems, pp 1444–1447 Zhang L, Kong Z, Chang C (2013) PCKGen: a phase change memory based cryptographic key generator. In: Proceedings of IEEE international symposium on circuits and systems, pp 1444–1447
go back to reference Zhang L, Fong X, Chang C, Kong Z, Roy K (2015) Optimizating emerging non-volatile memories for dual-mode applications: data storage and key generator. IEEE Trans Comput Aided Des Integr Circuits Syst 34(7):1176–1187CrossRef Zhang L, Fong X, Chang C, Kong Z, Roy K (2015) Optimizating emerging non-volatile memories for dual-mode applications: data storage and key generator. IEEE Trans Comput Aided Des Integr Circuits Syst 34(7):1176–1187CrossRef
Metadata
Title
SSTRNG: self starved feedback SRAM based true random number generator using quantum cellular automata
Authors
Arindam Sadhu
Kunal Das
Debashis De
Maitreyi Ray Kanjilal
Publication date
26-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 7/2020
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04525-w

Other articles of this Issue 7/2020

Microsystem Technologies 7/2020 Go to the issue