Skip to main content
Top
Published in: Journal of Scientific Computing 2/2023

01-08-2023

Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit–Explicit Backward Difference Formulas up to Fifth Order for Convection–Diffusion Equation

Authors: Haijin Wang, Xiaobin Shi, Qiang Zhang

Published in: Journal of Scientific Computing | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the stability analysis and optimal error estimates are presented for a kind of fully discrete schemes for solving one-dimensional linear convection–diffusion equation with periodic boundary conditions. The fully discrete schemes are defined with local discontinuous Galerkin (LDG) spatial discretization methods coupled with implicit–explicit (IMEX) temporal discretization methods based on backward difference formulas (BDF). By combining an improved multiplier technique used in the stability analysis for multistep methods and the technique to deal with derivative and jump in LDG methods, we establish a general framework of stability analysis for the corresponding fully discrete LDG–IMEX–BDF schemes up to fifth order in time. The considered schemes are proved to be unconditionally stable, in the sense that a properly defined “discrete energy” is dissipative if the time step is upper bounded by a constant which is independent of the mesh size. Optimal orders of the \(L^2\) norm accuracy in both space and time are also proved by energy analysis. Numerical tests are presented to validate the theoretical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Adams, R.A.: Sobolev Spaces. Academic Press, Canbridge (1975)MATH Adams, R.A.: Sobolev Spaces. Academic Press, Canbridge (1975)MATH
2.
go back to reference Akrivis, G.: Stability of implicit–explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal. 53(1), 464–484 (2015)MathSciNetCrossRefMATH Akrivis, G.: Stability of implicit–explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal. 53(1), 464–484 (2015)MathSciNetCrossRefMATH
3.
go back to reference Akrivis, G.: Stability properties of implicit–explicit multistep methods for a class of nonlinear parabolic equations. Math. Comput. 85(301), 2217–2229 (2016)MathSciNetCrossRefMATH Akrivis, G.: Stability properties of implicit–explicit multistep methods for a class of nonlinear parabolic equations. Math. Comput. 85(301), 2217–2229 (2016)MathSciNetCrossRefMATH
4.
go back to reference Akrivis, G., Chen, M., Yu, F., Zhou, Z.: The energy technique for the six-step BDF method. SIAM J. Numer. Anal. 59(5), 2449–2472 (2021)MathSciNetCrossRefMATH Akrivis, G., Chen, M., Yu, F., Zhou, Z.: The energy technique for the six-step BDF method. SIAM J. Numer. Anal. 59(5), 2449–2472 (2021)MathSciNetCrossRefMATH
5.
go back to reference Akrivis, G., Katsoprinakis, E.: Backward difference formulae: new multipliers and stability properties for parabolic equations. Math. Comput. 85(301), 2195–2216 (2016)MathSciNetCrossRefMATH Akrivis, G., Katsoprinakis, E.: Backward difference formulae: new multipliers and stability properties for parabolic equations. Math. Comput. 85(301), 2195–2216 (2016)MathSciNetCrossRefMATH
6.
go back to reference Akrivis, G., Lubich, C.: Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131(4), 713–735 (2015)MathSciNetCrossRefMATH Akrivis, G., Lubich, C.: Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131(4), 713–735 (2015)MathSciNetCrossRefMATH
7.
go back to reference Ascher, U., Ruuth, S., Spiteri, R.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)MathSciNetCrossRefMATH Ascher, U., Ruuth, S., Spiteri, R.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)MathSciNetCrossRefMATH
8.
go back to reference Ascher, U., Ruuth, S., Wetton, B.: Implicit explicit methods for time-dependent partial-differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetCrossRefMATH Ascher, U., Ruuth, S., Wetton, B.: Implicit explicit methods for time-dependent partial-differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetCrossRefMATH
9.
go back to reference Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)MathSciNetCrossRefMATH Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)MathSciNetCrossRefMATH
10.
go back to reference Calvo, M., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37(4), 535–549 (2001)MathSciNetCrossRefMATH Calvo, M., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37(4), 535–549 (2001)MathSciNetCrossRefMATH
11.
go back to reference Castillo, P., Cockburn, B., Schotzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71(238), 455–478 (2002)MathSciNetCrossRefMATH Castillo, P., Cockburn, B., Schotzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71(238), 455–478 (2002)MathSciNetCrossRefMATH
12.
go back to reference Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
13.
go back to reference Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetCrossRefMATH
14.
go back to reference Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATH
16.
go back to reference Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Berlin (1996)CrossRefMATH Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Berlin (1996)CrossRefMATH
17.
go back to reference Hu, J., Shu, R.: On the uniform accuracy of implicit–explicit backward differentiation formulas (IMEX–BDF) for stiff hyperbolic relaxation systems and kinetic equations. Math. Comput. 90(328), 641–670 (2021)MathSciNetCrossRefMATH Hu, J., Shu, R.: On the uniform accuracy of implicit–explicit backward differentiation formulas (IMEX–BDF) for stiff hyperbolic relaxation systems and kinetic equations. Math. Comput. 90(328), 641–670 (2021)MathSciNetCrossRefMATH
18.
go back to reference Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)MathSciNetCrossRefMATH Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)MathSciNetCrossRefMATH
19.
go back to reference Kennedy, C., Carpenter, M.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefMATH Kennedy, C., Carpenter, M.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefMATH
20.
21.
go back to reference Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33(4), 1365–1385 (2013)MathSciNetCrossRefMATH Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33(4), 1365–1385 (2013)MathSciNetCrossRefMATH
22.
23.
go back to reference Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53(1), 206–227 (2015)MathSciNetCrossRefMATH Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53(1), 206–227 (2015)MathSciNetCrossRefMATH
24.
go back to reference Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272(2), 237–258 (2016)MathSciNetMATH Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272(2), 237–258 (2016)MathSciNetMATH
25.
go back to reference Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM: M2AN 50(4), 1083–1105 (2016)MathSciNetCrossRefMATH Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM: M2AN 50(4), 1083–1105 (2016)MathSciNetCrossRefMATH
26.
go back to reference Wang, H., Zhang, Q., Shu, C.-W.: Third order implicit–explicit Runge–Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection–diffusion problems with Dirichlet boundary conditions. J. Comput. Appl. Math. 342, 164–179 (2018)MathSciNetCrossRefMATH Wang, H., Zhang, Q., Shu, C.-W.: Third order implicit–explicit Runge–Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection–diffusion problems with Dirichlet boundary conditions. J. Comput. Appl. Math. 342, 164–179 (2018)MathSciNetCrossRefMATH
27.
go back to reference Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Comm. Comput. Phys. 7(1), 1–46 (2010)MathSciNetCrossRefMATH Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Comm. Comput. Phys. 7(1), 1–46 (2010)MathSciNetCrossRefMATH
28.
go back to reference Zhang, Q., Gao, F.: A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J. Sci. Comput. 51(1), 107–134 (2012)MathSciNetCrossRefMATH Zhang, Q., Gao, F.: A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J. Sci. Comput. 51(1), 107–134 (2012)MathSciNetCrossRefMATH
29.
go back to reference Zhao, W., Huang, J.: Boundary treatment of implicit–explicit Runge–Kutta method for hyperbolic systems with source terms. J. Comput. Phys. 423, 109828 (2020)MathSciNetCrossRefMATH Zhao, W., Huang, J.: Boundary treatment of implicit–explicit Runge–Kutta method for hyperbolic systems with source terms. J. Comput. Phys. 423, 109828 (2020)MathSciNetCrossRefMATH
Metadata
Title
Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit–Explicit Backward Difference Formulas up to Fifth Order for Convection–Diffusion Equation
Authors
Haijin Wang
Xiaobin Shi
Qiang Zhang
Publication date
01-08-2023
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2023
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02264-9

Other articles of this Issue 2/2023

Journal of Scientific Computing 2/2023 Go to the issue

Premium Partner