Skip to main content
Top
Published in: Fluid Dynamics 8/2022

01-12-2022

Stability of an Advective Flow in a Horizontal Fluid Layer Heat-Insulated from Below with Rigid Boundaries

Authors: K. G. Shvarts, Yu. A. Shvarts

Published in: Fluid Dynamics | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we study the stability of an advective flow in a flat horizontal layer of an incompressible fluid with rigid boundaries. A linear temperature distribution is set on the upper boundary of the layer while the lower boundary is thermally insulated. The plane-parallel flow due to the action of horizontal convection is described analytically as an exact solution of the Navier–Stokes equations in the Boussinesq approximation. In the linear theory, the stability of an advective flow to normal perturbations is studied at various values of the Prandtl number. The most dangerous modes are determined, and neutral curves are plotted. In the nonlinear formulation of the problem, the structure of finite-amplitude perturbations in the supercritical region near the minima of the neutral curves is studied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gershuni, G.Z., Zhukhovitskii, E.M., and Nepomnyashchii, A.A., Ustoichivost’ konvektivnykh techenii (Stability of Convective Flows), Moscow: Nauka, 1989. Gershuni, G.Z., Zhukhovitskii, E.M., and Nepomnyashchii, A.A., Ustoichivost’ konvektivnykh techenii (Stability of Convective Flows), Moscow: Nauka, 1989.
2.
go back to reference Ostroumov, G.A., Free Convection under the Conditions of the Internal Problem, NASA TM, 1958. Ostroumov, G.A., Free Convection under the Conditions of the Internal Problem, NASA TM, 1958.
3.
go back to reference Andreev, V.K., Birikh solutions for the convection equations and its certain generalizations, Preprint of Institute of Numerical Mathematics, Siberian Branch RAS, 2010, nos. 1–10. Andreev, V.K., Birikh solutions for the convection equations and its certain generalizations, Preprint of Institute of Numerical Mathematics, Siberian Branch RAS, 2010, nos. 1–10.
4.
go back to reference Birikh, R.V., Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Techn. Phys., 1966, vol. 7, no. 3, pp. 43–44.ADSCrossRef Birikh, R.V., Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Techn. Phys., 1966, vol. 7, no. 3, pp. 43–44.ADSCrossRef
5.
go back to reference Gershuni, G.Z., Laure, P., Myznikov, V.M., Roux, B., and Zhukhovitsky, E.M., On the stability of plane-parallel advective flows in long horizontal layers, Microgravity Q., 1992, vol. 2, no. 3, pp. 141–151. Gershuni, G.Z., Laure, P., Myznikov, V.M., Roux, B., and Zhukhovitsky, E.M., On the stability of plane-parallel advective flows in long horizontal layers, Microgravity Q., 1992, vol. 2, no. 3, pp. 141–151.
6.
go back to reference Andreev, V.K. and Bekezhanova, V.B., Stability of non-isothermal fluids (review), J. Appl. Mech. Techn. Phys., 2013, no. 2, pp. 171–184. Andreev, V.K. and Bekezhanova, V.B., Stability of non-isothermal fluids (review), J. Appl. Mech. Techn. Phys., 2013, no. 2, pp. 171–184.
7.
go back to reference Schwarz, K.G., Stability of thermocapillary advective flow in a slowly rotating liquid layer under microgravity conditions, Fluid Dyn., 2012, vol. 47, no. 1, pp. 37–49.ADSMathSciNetCrossRefMATH Schwarz, K.G., Stability of thermocapillary advective flow in a slowly rotating liquid layer under microgravity conditions, Fluid Dyn., 2012, vol. 47, no. 1, pp. 37–49.ADSMathSciNetCrossRefMATH
11.
go back to reference Schwarz, K.G. and Schwarz, Yu.A., Stability of advective flow in a horizontal incompressible fluid layer in the presence of the Navier slip condition, Fluid Dyn., 2020, vol. 55, no. 1, pp. 31–42.ADSMathSciNetCrossRefMATH Schwarz, K.G. and Schwarz, Yu.A., Stability of advective flow in a horizontal incompressible fluid layer in the presence of the Navier slip condition, Fluid Dyn., 2020, vol. 55, no. 1, pp. 31–42.ADSMathSciNetCrossRefMATH
13.
go back to reference Lyubimova, T.P., Nikitin, D.A., and Skuridin, R.V., Acoustic wave effect onto the stability of advective flow in the plane layer, Vestn. Perm. Univ., Ser.: Mat., Mekh. Inform., 2011, no. 5(9), pp. 143–147. Lyubimova, T.P., Nikitin, D.A., and Skuridin, R.V., Acoustic wave effect onto the stability of advective flow in the plane layer, Vestn. Perm. Univ., Ser.: Mat., Mekh. Inform., 2011, no. 5(9), pp. 143–147.
14.
go back to reference Ivantsov, A.O., Weakly non-linear analysis of thermoacoustic advective flow stability, Vestn. Perm. Univ., Fiz., 2019, no. 3, pp. 28–44. Ivantsov, A.O., Weakly non-linear analysis of thermoacoustic advective flow stability, Vestn. Perm. Univ., Fiz., 2019, no. 3, pp. 28–44.
15.
go back to reference Slavchev, S., Hennenberg, M., Valhev, G., et al., Stability of ferrofluid flows in a horizontal channel subjected to a longitudinal temperature gradient and an oblique magnetic field, Microgravity Sci. Technol., 2008, vol. 20, no. 1, pp. 199–203.ADSCrossRef Slavchev, S., Hennenberg, M., Valhev, G., et al., Stability of ferrofluid flows in a horizontal channel subjected to a longitudinal temperature gradient and an oblique magnetic field, Microgravity Sci. Technol., 2008, vol. 20, no. 1, pp. 199–203.ADSCrossRef
16.
go back to reference Aristov, S.N. and Shvarts, K.G., Convective heat transfer in a locally heated plane incompressible fluid layer, Fluid Dyn., 2013, vol. 48, no. 3, pp. 330–335.ADSMathSciNetCrossRefMATH Aristov, S.N. and Shvarts, K.G., Convective heat transfer in a locally heated plane incompressible fluid layer, Fluid Dyn., 2013, vol. 48, no. 3, pp. 330–335.ADSMathSciNetCrossRefMATH
17.
go back to reference Aristov, S.N. and Prosviryakov, E.Yu., A new class of exact solutions for three-dimensional thermal diffusion equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286–293.CrossRef Aristov, S.N. and Prosviryakov, E.Yu., A new class of exact solutions for three-dimensional thermal diffusion equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286–293.CrossRef
19.
go back to reference Demin, V.A., Convective separators, Prikl. Fiz., 2013, no. 4, pp. 60–67. https://applphys.orion-ir.ru/appl-13/13-4/PF-13-4-60.pdf. Demin, V.A., Convective separators, Prikl. Fiz., 2013, no. 4, pp. 60–67. https://​applphys.​orion-ir.​ru/​appl-13/​13-4/​PF-13-4-60.​pdf.​
20.
go back to reference Hart, J., A note on the stability of low-Prandtle-number Hadley circulations, J. Fluid Mech., 1983, vol. 132, pp. 271–281.ADSCrossRefMATH Hart, J., A note on the stability of low-Prandtle-number Hadley circulations, J. Fluid Mech., 1983, vol. 132, pp. 271–281.ADSCrossRefMATH
21.
go back to reference Laure, P., Etude des mouvements de convection dans une cavite rectangulaire soumise a un gradient de temperature horizontal, J. Mec. Theor., 1987, vol. 6, pp. 351–382.MATH Laure, P., Etude des mouvements de convection dans une cavite rectangulaire soumise a un gradient de temperature horizontal, J. Mec. Theor., 1987, vol. 6, pp. 351–382.MATH
22.
go back to reference Kuo, H.P. and Korpela, S.A., Stability and finite amplitude natural convection in a shallow cavity with insulated top and bottom and heated from a side, Phys. Fluids, 1988, vol. 31, no. 1, pp. 33–42.ADSCrossRefMATH Kuo, H.P. and Korpela, S.A., Stability and finite amplitude natural convection in a shallow cavity with insulated top and bottom and heated from a side, Phys. Fluids, 1988, vol. 31, no. 1, pp. 33–42.ADSCrossRefMATH
23.
go back to reference Wang, P. and Daniels, P.G., Numerical solutions for the flow near the end of a shallow laterally heated cavity, J. Eng. Math., 1994, vol. 28, pp. 211–226.MathSciNetCrossRefMATH Wang, P. and Daniels, P.G., Numerical solutions for the flow near the end of a shallow laterally heated cavity, J. Eng. Math., 1994, vol. 28, pp. 211–226.MathSciNetCrossRefMATH
24.
go back to reference Lyubimov, D.V., Lyubimova, T.P., Nikitin, D.A., et al., Stability of a binary-mixture advective flow in a plane horizontal layer with perfectly heat conducting boundaries, Fluid Dyn., 2010, vol. 45, no. 3, pp. 458–467.ADSMathSciNetCrossRefMATH Lyubimov, D.V., Lyubimova, T.P., Nikitin, D.A., et al., Stability of a binary-mixture advective flow in a plane horizontal layer with perfectly heat conducting boundaries, Fluid Dyn., 2010, vol. 45, no. 3, pp. 458–467.ADSMathSciNetCrossRefMATH
25.
go back to reference Lybimova, T.P., Lybymov, D.V., Morozov, V.A., et al., Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Pt. 1. Effect of aspect ratio and prandtl number, J. Fluid Mech., 2009, vol. 635, pp. 275–295.ADSMathSciNetCrossRef Lybimova, T.P., Lybymov, D.V., Morozov, V.A., et al., Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Pt. 1. Effect of aspect ratio and prandtl number, J. Fluid Mech., 2009, vol. 635, pp. 275–295.ADSMathSciNetCrossRef
26.
go back to reference Lyubimova, T.P. and Nikitin, D.A., Stability of the advective flow in a horizontal rectangular channel with adiabatic boundaries, Fluid Dyn., 2011, vol. 46, no. 2, pp. 240–249.ADSMathSciNetCrossRefMATH Lyubimova, T.P. and Nikitin, D.A., Stability of the advective flow in a horizontal rectangular channel with adiabatic boundaries, Fluid Dyn., 2011, vol. 46, no. 2, pp. 240–249.ADSMathSciNetCrossRefMATH
27.
go back to reference Mizev, A., Mosheva, E., Kostarev, K., et al., Stability of solutal advective flow in a horizontal shallow layer, Phys. Rev. Fluids, 2017, vol. 2, no. 10, p. 103903. Mizev, A., Mosheva, E., Kostarev, K., et al., Stability of solutal advective flow in a horizontal shallow layer, Phys. Rev. Fluids, 2017, vol. 2, no. 10, p. 103903.
28.
go back to reference Demin, V.A., Kostarev, K.G., Mizev, A.I., et al., On convective instability of the counter propagating fluxes of inter-soluble liquids, Russ. J. Nonlin. Dyn., 2014, vol. 10, no. 2, pp. 195–208.MATH Demin, V.A., Kostarev, K.G., Mizev, A.I., et al., On convective instability of the counter propagating fluxes of inter-soluble liquids, Russ. J. Nonlin. Dyn., 2014, vol. 10, no. 2, pp. 195–208.MATH
29.
go back to reference Schwarz, K.G., Stability of advective flow in a rotating horizontal incompressible fluid layer heat-insulated from below with rigid boundaries at low Prandtl number, Fluid Dyn., 2022, vol. 57, no. 2, pp. 146–157.ADSMathSciNetCrossRefMATH Schwarz, K.G., Stability of advective flow in a rotating horizontal incompressible fluid layer heat-insulated from below with rigid boundaries at low Prandtl number, Fluid Dyn., 2022, vol. 57, no. 2, pp. 146–157.ADSMathSciNetCrossRefMATH
30.
go back to reference Aristov, S.N. and Shvarts, K.G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti (Vortex Flows of Advective Nature in a Rotating Fluid Layer), Perm: Perm Univ., 2006. Aristov, S.N. and Shvarts, K.G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti (Vortex Flows of Advective Nature in a Rotating Fluid Layer), Perm: Perm Univ., 2006.
31.
go back to reference Tarunin, E.L. and Shvarts, K.G., Investigation of the linear stability of advective flow by the grid method, Vychisl. Tekhnol., 2001, vol. 6, no. 6, pp. 108–117.MathSciNetMATH Tarunin, E.L. and Shvarts, K.G., Investigation of the linear stability of advective flow by the grid method, Vychisl. Tekhnol., 2001, vol. 6, no. 6, pp. 108–117.MathSciNetMATH
32.
go back to reference Shvarts, K.G., Finite-amplitude spatial perturbations of advective flow in the rotating horizontal fluid layer, Vychisl. Tekhnol., 2001, vol. 6, special issue, part 2: Proc. Int. Conf. RDAMM, Moscow, 2001, pp. 702–707. Shvarts, K.G., Finite-amplitude spatial perturbations of advective flow in the rotating horizontal fluid layer, Vychisl. Tekhnol., 2001, vol. 6, special issue, part 2: Proc. Int. Conf. RDAMM, Moscow, 2001, pp. 702–707.
33.
go back to reference Tarunin, E.L., Vychislitel’nyi eksperiment v zadachakh svobodnoi konvektsii (Computational Experiment in Problems of Free Convection), Irkutsk: Irkutsk Univ., 1990. Tarunin, E.L., Vychislitel’nyi eksperiment v zadachakh svobodnoi konvektsii (Computational Experiment in Problems of Free Convection), Irkutsk: Irkutsk Univ., 1990.
Metadata
Title
Stability of an Advective Flow in a Horizontal Fluid Layer Heat-Insulated from Below with Rigid Boundaries
Authors
K. G. Shvarts
Yu. A. Shvarts
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 8/2022
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462822080055

Other articles of this Issue 8/2022

Fluid Dynamics 8/2022 Go to the issue

Premium Partners