Skip to main content
Erschienen in: Fluid Dynamics 8/2022

01.12.2022

Stability of an Advective Flow in a Horizontal Fluid Layer Heat-Insulated from Below with Rigid Boundaries

verfasst von: K. G. Shvarts, Yu. A. Shvarts

Erschienen in: Fluid Dynamics | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study the stability of an advective flow in a flat horizontal layer of an incompressible fluid with rigid boundaries. A linear temperature distribution is set on the upper boundary of the layer while the lower boundary is thermally insulated. The plane-parallel flow due to the action of horizontal convection is described analytically as an exact solution of the Navier–Stokes equations in the Boussinesq approximation. In the linear theory, the stability of an advective flow to normal perturbations is studied at various values of the Prandtl number. The most dangerous modes are determined, and neutral curves are plotted. In the nonlinear formulation of the problem, the structure of finite-amplitude perturbations in the supercritical region near the minima of the neutral curves is studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gershuni, G.Z., Zhukhovitskii, E.M., and Nepomnyashchii, A.A., Ustoichivost’ konvektivnykh techenii (Stability of Convective Flows), Moscow: Nauka, 1989. Gershuni, G.Z., Zhukhovitskii, E.M., and Nepomnyashchii, A.A., Ustoichivost’ konvektivnykh techenii (Stability of Convective Flows), Moscow: Nauka, 1989.
2.
Zurück zum Zitat Ostroumov, G.A., Free Convection under the Conditions of the Internal Problem, NASA TM, 1958. Ostroumov, G.A., Free Convection under the Conditions of the Internal Problem, NASA TM, 1958.
3.
Zurück zum Zitat Andreev, V.K., Birikh solutions for the convection equations and its certain generalizations, Preprint of Institute of Numerical Mathematics, Siberian Branch RAS, 2010, nos. 1–10. Andreev, V.K., Birikh solutions for the convection equations and its certain generalizations, Preprint of Institute of Numerical Mathematics, Siberian Branch RAS, 2010, nos. 1–10.
4.
Zurück zum Zitat Birikh, R.V., Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Techn. Phys., 1966, vol. 7, no. 3, pp. 43–44.ADSCrossRef Birikh, R.V., Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Techn. Phys., 1966, vol. 7, no. 3, pp. 43–44.ADSCrossRef
5.
Zurück zum Zitat Gershuni, G.Z., Laure, P., Myznikov, V.M., Roux, B., and Zhukhovitsky, E.M., On the stability of plane-parallel advective flows in long horizontal layers, Microgravity Q., 1992, vol. 2, no. 3, pp. 141–151. Gershuni, G.Z., Laure, P., Myznikov, V.M., Roux, B., and Zhukhovitsky, E.M., On the stability of plane-parallel advective flows in long horizontal layers, Microgravity Q., 1992, vol. 2, no. 3, pp. 141–151.
6.
Zurück zum Zitat Andreev, V.K. and Bekezhanova, V.B., Stability of non-isothermal fluids (review), J. Appl. Mech. Techn. Phys., 2013, no. 2, pp. 171–184. Andreev, V.K. and Bekezhanova, V.B., Stability of non-isothermal fluids (review), J. Appl. Mech. Techn. Phys., 2013, no. 2, pp. 171–184.
7.
Zurück zum Zitat Schwarz, K.G., Stability of thermocapillary advective flow in a slowly rotating liquid layer under microgravity conditions, Fluid Dyn., 2012, vol. 47, no. 1, pp. 37–49.ADSMathSciNetCrossRefMATH Schwarz, K.G., Stability of thermocapillary advective flow in a slowly rotating liquid layer under microgravity conditions, Fluid Dyn., 2012, vol. 47, no. 1, pp. 37–49.ADSMathSciNetCrossRefMATH
11.
Zurück zum Zitat Schwarz, K.G. and Schwarz, Yu.A., Stability of advective flow in a horizontal incompressible fluid layer in the presence of the Navier slip condition, Fluid Dyn., 2020, vol. 55, no. 1, pp. 31–42.ADSMathSciNetCrossRefMATH Schwarz, K.G. and Schwarz, Yu.A., Stability of advective flow in a horizontal incompressible fluid layer in the presence of the Navier slip condition, Fluid Dyn., 2020, vol. 55, no. 1, pp. 31–42.ADSMathSciNetCrossRefMATH
13.
Zurück zum Zitat Lyubimova, T.P., Nikitin, D.A., and Skuridin, R.V., Acoustic wave effect onto the stability of advective flow in the plane layer, Vestn. Perm. Univ., Ser.: Mat., Mekh. Inform., 2011, no. 5(9), pp. 143–147. Lyubimova, T.P., Nikitin, D.A., and Skuridin, R.V., Acoustic wave effect onto the stability of advective flow in the plane layer, Vestn. Perm. Univ., Ser.: Mat., Mekh. Inform., 2011, no. 5(9), pp. 143–147.
14.
Zurück zum Zitat Ivantsov, A.O., Weakly non-linear analysis of thermoacoustic advective flow stability, Vestn. Perm. Univ., Fiz., 2019, no. 3, pp. 28–44. Ivantsov, A.O., Weakly non-linear analysis of thermoacoustic advective flow stability, Vestn. Perm. Univ., Fiz., 2019, no. 3, pp. 28–44.
15.
Zurück zum Zitat Slavchev, S., Hennenberg, M., Valhev, G., et al., Stability of ferrofluid flows in a horizontal channel subjected to a longitudinal temperature gradient and an oblique magnetic field, Microgravity Sci. Technol., 2008, vol. 20, no. 1, pp. 199–203.ADSCrossRef Slavchev, S., Hennenberg, M., Valhev, G., et al., Stability of ferrofluid flows in a horizontal channel subjected to a longitudinal temperature gradient and an oblique magnetic field, Microgravity Sci. Technol., 2008, vol. 20, no. 1, pp. 199–203.ADSCrossRef
16.
Zurück zum Zitat Aristov, S.N. and Shvarts, K.G., Convective heat transfer in a locally heated plane incompressible fluid layer, Fluid Dyn., 2013, vol. 48, no. 3, pp. 330–335.ADSMathSciNetCrossRefMATH Aristov, S.N. and Shvarts, K.G., Convective heat transfer in a locally heated plane incompressible fluid layer, Fluid Dyn., 2013, vol. 48, no. 3, pp. 330–335.ADSMathSciNetCrossRefMATH
17.
Zurück zum Zitat Aristov, S.N. and Prosviryakov, E.Yu., A new class of exact solutions for three-dimensional thermal diffusion equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286–293.CrossRef Aristov, S.N. and Prosviryakov, E.Yu., A new class of exact solutions for three-dimensional thermal diffusion equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286–293.CrossRef
19.
Zurück zum Zitat Demin, V.A., Convective separators, Prikl. Fiz., 2013, no. 4, pp. 60–67. https://applphys.orion-ir.ru/appl-13/13-4/PF-13-4-60.pdf. Demin, V.A., Convective separators, Prikl. Fiz., 2013, no. 4, pp. 60–67. https://​applphys.​orion-ir.​ru/​appl-13/​13-4/​PF-13-4-60.​pdf.​
20.
Zurück zum Zitat Hart, J., A note on the stability of low-Prandtle-number Hadley circulations, J. Fluid Mech., 1983, vol. 132, pp. 271–281.ADSCrossRefMATH Hart, J., A note on the stability of low-Prandtle-number Hadley circulations, J. Fluid Mech., 1983, vol. 132, pp. 271–281.ADSCrossRefMATH
21.
Zurück zum Zitat Laure, P., Etude des mouvements de convection dans une cavite rectangulaire soumise a un gradient de temperature horizontal, J. Mec. Theor., 1987, vol. 6, pp. 351–382.MATH Laure, P., Etude des mouvements de convection dans une cavite rectangulaire soumise a un gradient de temperature horizontal, J. Mec. Theor., 1987, vol. 6, pp. 351–382.MATH
22.
Zurück zum Zitat Kuo, H.P. and Korpela, S.A., Stability and finite amplitude natural convection in a shallow cavity with insulated top and bottom and heated from a side, Phys. Fluids, 1988, vol. 31, no. 1, pp. 33–42.ADSCrossRefMATH Kuo, H.P. and Korpela, S.A., Stability and finite amplitude natural convection in a shallow cavity with insulated top and bottom and heated from a side, Phys. Fluids, 1988, vol. 31, no. 1, pp. 33–42.ADSCrossRefMATH
23.
Zurück zum Zitat Wang, P. and Daniels, P.G., Numerical solutions for the flow near the end of a shallow laterally heated cavity, J. Eng. Math., 1994, vol. 28, pp. 211–226.MathSciNetCrossRefMATH Wang, P. and Daniels, P.G., Numerical solutions for the flow near the end of a shallow laterally heated cavity, J. Eng. Math., 1994, vol. 28, pp. 211–226.MathSciNetCrossRefMATH
24.
Zurück zum Zitat Lyubimov, D.V., Lyubimova, T.P., Nikitin, D.A., et al., Stability of a binary-mixture advective flow in a plane horizontal layer with perfectly heat conducting boundaries, Fluid Dyn., 2010, vol. 45, no. 3, pp. 458–467.ADSMathSciNetCrossRefMATH Lyubimov, D.V., Lyubimova, T.P., Nikitin, D.A., et al., Stability of a binary-mixture advective flow in a plane horizontal layer with perfectly heat conducting boundaries, Fluid Dyn., 2010, vol. 45, no. 3, pp. 458–467.ADSMathSciNetCrossRefMATH
25.
Zurück zum Zitat Lybimova, T.P., Lybymov, D.V., Morozov, V.A., et al., Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Pt. 1. Effect of aspect ratio and prandtl number, J. Fluid Mech., 2009, vol. 635, pp. 275–295.ADSMathSciNetCrossRef Lybimova, T.P., Lybymov, D.V., Morozov, V.A., et al., Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Pt. 1. Effect of aspect ratio and prandtl number, J. Fluid Mech., 2009, vol. 635, pp. 275–295.ADSMathSciNetCrossRef
26.
Zurück zum Zitat Lyubimova, T.P. and Nikitin, D.A., Stability of the advective flow in a horizontal rectangular channel with adiabatic boundaries, Fluid Dyn., 2011, vol. 46, no. 2, pp. 240–249.ADSMathSciNetCrossRefMATH Lyubimova, T.P. and Nikitin, D.A., Stability of the advective flow in a horizontal rectangular channel with adiabatic boundaries, Fluid Dyn., 2011, vol. 46, no. 2, pp. 240–249.ADSMathSciNetCrossRefMATH
27.
Zurück zum Zitat Mizev, A., Mosheva, E., Kostarev, K., et al., Stability of solutal advective flow in a horizontal shallow layer, Phys. Rev. Fluids, 2017, vol. 2, no. 10, p. 103903. Mizev, A., Mosheva, E., Kostarev, K., et al., Stability of solutal advective flow in a horizontal shallow layer, Phys. Rev. Fluids, 2017, vol. 2, no. 10, p. 103903.
28.
Zurück zum Zitat Demin, V.A., Kostarev, K.G., Mizev, A.I., et al., On convective instability of the counter propagating fluxes of inter-soluble liquids, Russ. J. Nonlin. Dyn., 2014, vol. 10, no. 2, pp. 195–208.MATH Demin, V.A., Kostarev, K.G., Mizev, A.I., et al., On convective instability of the counter propagating fluxes of inter-soluble liquids, Russ. J. Nonlin. Dyn., 2014, vol. 10, no. 2, pp. 195–208.MATH
29.
Zurück zum Zitat Schwarz, K.G., Stability of advective flow in a rotating horizontal incompressible fluid layer heat-insulated from below with rigid boundaries at low Prandtl number, Fluid Dyn., 2022, vol. 57, no. 2, pp. 146–157.ADSMathSciNetCrossRefMATH Schwarz, K.G., Stability of advective flow in a rotating horizontal incompressible fluid layer heat-insulated from below with rigid boundaries at low Prandtl number, Fluid Dyn., 2022, vol. 57, no. 2, pp. 146–157.ADSMathSciNetCrossRefMATH
30.
Zurück zum Zitat Aristov, S.N. and Shvarts, K.G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti (Vortex Flows of Advective Nature in a Rotating Fluid Layer), Perm: Perm Univ., 2006. Aristov, S.N. and Shvarts, K.G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti (Vortex Flows of Advective Nature in a Rotating Fluid Layer), Perm: Perm Univ., 2006.
31.
Zurück zum Zitat Tarunin, E.L. and Shvarts, K.G., Investigation of the linear stability of advective flow by the grid method, Vychisl. Tekhnol., 2001, vol. 6, no. 6, pp. 108–117.MathSciNetMATH Tarunin, E.L. and Shvarts, K.G., Investigation of the linear stability of advective flow by the grid method, Vychisl. Tekhnol., 2001, vol. 6, no. 6, pp. 108–117.MathSciNetMATH
32.
Zurück zum Zitat Shvarts, K.G., Finite-amplitude spatial perturbations of advective flow in the rotating horizontal fluid layer, Vychisl. Tekhnol., 2001, vol. 6, special issue, part 2: Proc. Int. Conf. RDAMM, Moscow, 2001, pp. 702–707. Shvarts, K.G., Finite-amplitude spatial perturbations of advective flow in the rotating horizontal fluid layer, Vychisl. Tekhnol., 2001, vol. 6, special issue, part 2: Proc. Int. Conf. RDAMM, Moscow, 2001, pp. 702–707.
33.
Zurück zum Zitat Tarunin, E.L., Vychislitel’nyi eksperiment v zadachakh svobodnoi konvektsii (Computational Experiment in Problems of Free Convection), Irkutsk: Irkutsk Univ., 1990. Tarunin, E.L., Vychislitel’nyi eksperiment v zadachakh svobodnoi konvektsii (Computational Experiment in Problems of Free Convection), Irkutsk: Irkutsk Univ., 1990.
Metadaten
Titel
Stability of an Advective Flow in a Horizontal Fluid Layer Heat-Insulated from Below with Rigid Boundaries
verfasst von
K. G. Shvarts
Yu. A. Shvarts
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 8/2022
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462822080055

Weitere Artikel der Ausgabe 8/2022

Fluid Dynamics 8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.