Skip to main content
Top
Published in: Journal of Scientific Computing 2/2020

01-02-2020

Stabilized Energy Factorization Approach for Allen–Cahn Equation with Logarithmic Flory–Huggins Potential

Authors: Xiuhua Wang, Jisheng Kou, Jianchao Cai

Published in: Journal of Scientific Computing | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Allen–Cahn equation is one of fundamental equations of phase-field models, while the logarithmic Flory–Huggins potential is one of the most useful energy potentials in various phase-field models. In this paper, we consider numerical schemes for solving the Allen–Cahn equation with logarithmic Flory–Huggins potential. The main challenge is how to design efficient numerical schemes that preserve the maximum principle and energy dissipation law due to the strong nonlinearity of the energy potential function. We propose a novel energy factorization approach with the stabilization technique, which is called stabilized energy factorization approach, to deal with the Flory–Huggins potential. One advantage of the proposed approach is that all nonlinear terms can be treated semi-implicitly and the resultant numerical scheme is purely linear and easy to implement. Moreover, the discrete maximum principle and unconditional energy stability of the proposed scheme are rigorously proved using the discrete variational principle. Numerical results are presented to demonstrate the stability and effectiveness of the proposed scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979) Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)
2.
go back to reference Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34(2), 828–852 (1997)MathSciNetMATH Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34(2), 828–852 (1997)MathSciNetMATH
3.
go back to reference Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013)MathSciNetMATH Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013)MathSciNetMATH
4.
go back to reference Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM: M2AN 45, 697738 (2011)MathSciNetMATH Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM: M2AN 45, 697738 (2011)MathSciNetMATH
5.
go back to reference Cahn, J.W., Allen, S.M.: A microscopic theory for domain wall motion and its experimental varification in fe-al alloy domain growth kinetics. J. Phys. Colloque C7, C7–51 (1977) Cahn, J.W., Allen, S.M.: A microscopic theory for domain wall motion and its experimental varification in fe-al alloy domain growth kinetics. J. Phys. Colloque C7, C7–51 (1977)
6.
go back to reference Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258–267 (1958) Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)
7.
go back to reference Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)MathSciNetMATH Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)MathSciNetMATH
8.
go back to reference Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys. X 3, 100031 (2019) Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys. X 3, 100031 (2019)
9.
go back to reference Chen, Y., Shen, J.: Efficient, adaptive energy stable schemes for the incompressible Cahn–Hilliard Navier–Stokes phase-field models. J. Comput. Phys. 308, 40–56 (2016)MathSciNetMATH Chen, Y., Shen, J.: Efficient, adaptive energy stable schemes for the incompressible Cahn–Hilliard Navier–Stokes phase-field models. J. Comput. Phys. 308, 40–56 (2016)MathSciNetMATH
10.
go back to reference Church, J.M., Guo, Z., Jimack, P.K., Madzvamuse, A., Promislow, K., Wetton, B., Wise, S.M., Yang, F.: High accuracy benchmark problems for Allen–Cahn and Cahn–Hilliard dynamics. Commun. Comput. Phys. 26, 947–972 (2019)MathSciNet Church, J.M., Guo, Z., Jimack, P.K., Madzvamuse, A., Promislow, K., Wetton, B., Wise, S.M., Yang, F.: High accuracy benchmark problems for Allen–Cahn and Cahn–Hilliard dynamics. Commun. Comput. Phys. 26, 947–972 (2019)MathSciNet
11.
go back to reference Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)MathSciNetMATH Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)MathSciNetMATH
12.
go back to reference Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(4), 39–65 (1992)MathSciNetMATH Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(4), 39–65 (1992)MathSciNetMATH
13.
go back to reference Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)MathSciNetMATH Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)MathSciNetMATH
14.
go back to reference Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)MathSciNetMATH Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)MathSciNetMATH
15.
go back to reference Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)MathSciNetMATH Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)MathSciNetMATH
16.
go back to reference Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Mater. Res. Soc. Sympos. Proc., vol. 529. MRS, Warrendale, PA, pp. 39–46 (1998) Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Mater. Res. Soc. Sympos. Proc., vol. 529. MRS, Warrendale, PA, pp. 39–46 (1998)
17.
go back to reference Fan, X., Kou, J., Qiao, Z., Sun, S.: A componentwise convex splitting scheme for diffuse interface models with Van der Waals and Peng–Robinson equations of state. SIAM J. Sci. Comput. 39(1), B1–B28 (2017)MathSciNetMATH Fan, X., Kou, J., Qiao, Z., Sun, S.: A componentwise convex splitting scheme for diffuse interface models with Van der Waals and Peng–Robinson equations of state. SIAM J. Sci. Comput. 39(1), B1–B28 (2017)MathSciNetMATH
18.
go back to reference Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)MathSciNetMATH Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)MathSciNetMATH
19.
go back to reference Feng, X., Song, H., Tang, T., Yang, J.: Nonlinearly stable implicit-explicit methods for the Allen–Cahn equation. Inverse Probl. Image 7, 679–695 (2013)MATH Feng, X., Song, H., Tang, T., Yang, J.: Nonlinearly stable implicit-explicit methods for the Allen–Cahn equation. Inverse Probl. Image 7, 679–695 (2013)MATH
20.
go back to reference Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87, 675–699 (2001)MathSciNetMATH Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87, 675–699 (2001)MathSciNetMATH
21.
go back to reference Gomez, H., Hughes, T.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230, 5310–5327 (2011)MathSciNetMATH Gomez, H., Hughes, T.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230, 5310–5327 (2011)MathSciNetMATH
22.
go back to reference Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, Thomas J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)MathSciNetMATH Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, Thomas J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)MathSciNetMATH
23.
go back to reference Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)MathSciNetMATH Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)MathSciNetMATH
24.
go back to reference Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun. Math. Sci. 14, 489–515 (2016)MathSciNetMATH Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun. Math. Sci. 14, 489–515 (2016)MathSciNetMATH
25.
go back to reference Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015)MathSciNetMATH Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015)MathSciNetMATH
26.
go back to reference Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)MathSciNetMATH Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)MathSciNetMATH
27.
go back to reference Kästner, M., Metsch, P., de Borst, R.: Isogeometric analysis of the Cahn–Hilliard equation-a convergence study. J. Comput. Phys. 305, 360–371 (2016)MathSciNetMATH Kästner, M., Metsch, P., de Borst, R.: Isogeometric analysis of the Cahn–Hilliard equation-a convergence study. J. Comput. Phys. 305, 360–371 (2016)MathSciNetMATH
28.
go back to reference Kay, D., Styles, V., Suli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection. SIAM J. Numer. Anal. 47, 2660–2685 (2009)MathSciNetMATH Kay, D., Styles, V., Suli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection. SIAM J. Numer. Anal. 47, 2660–2685 (2009)MathSciNetMATH
29.
go back to reference Khiari, N., Achouri, T., Ben Mohamed, M., Omrani, K.: Finite difference approximate solutions for the Cahn–Hilliard equation. Numer. Methods Partial Differ. Eqs. 23, 437–455 (2007)MathSciNetMATH Khiari, N., Achouri, T., Ben Mohamed, M., Omrani, K.: Finite difference approximate solutions for the Cahn–Hilliard equation. Numer. Methods Partial Differ. Eqs. 23, 437–455 (2007)MathSciNetMATH
30.
go back to reference Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)MathSciNetMATH Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)MathSciNetMATH
31.
go back to reference Kou, J., Sun, S.: Numerical methods for a multi-component two-phase interface model with geometric mean influence parameters. SIAM J. Sci. Comput. 37(4), B543–B569 (2015)MATH Kou, J., Sun, S.: Numerical methods for a multi-component two-phase interface model with geometric mean influence parameters. SIAM J. Sci. Comput. 37(4), B543–B569 (2015)MATH
32.
go back to reference Kou, J., Sun, S.: Efficient energy-stable dynamic modeling of compositional grading. Int. J. Numer. Anal. Model. 14(2), 218–242 (2017)MathSciNetMATH Kou, J., Sun, S.: Efficient energy-stable dynamic modeling of compositional grading. Int. J. Numer. Anal. Model. 14(2), 218–242 (2017)MathSciNetMATH
33.
go back to reference Kou, J., Sun, S.: A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model. Fluid Phase Equilib. 456, 7–24 (2018) Kou, J., Sun, S.: A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model. Fluid Phase Equilib. 456, 7–24 (2018)
34.
go back to reference Kou, J., Sun, S., Wang, X.: Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow. SIAM J. Numer. Anal. 56(6), 3219–3248 (2018)MathSciNetMATH Kou, J., Sun, S., Wang, X.: Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow. SIAM J. Numer. Anal. 56(6), 3219–3248 (2018)MathSciNetMATH
35.
go back to reference Kou, J., Sun, S., Wang, X.: A novel energy factorization approach for the diffuse-interface model with Peng-Robinson equation of state. SIAM J. Sci. Comput. 42, B30–B56 (2020)MathSciNetMATH Kou, J., Sun, S., Wang, X.: A novel energy factorization approach for the diffuse-interface model with Peng-Robinson equation of state. SIAM J. Sci. Comput. 42, B30–B56 (2020)MathSciNetMATH
36.
go back to reference Kou, J., Sun, S.: Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility. Comput. Methods Appl. Mech. Eng. 331, 623–649 (2018)MathSciNet Kou, J., Sun, S.: Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility. Comput. Methods Appl. Mech. Eng. 331, 623–649 (2018)MathSciNet
37.
go back to reference Kou, J., Sun, S.: Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng–Robinson equation of state. J. Comput. Phys. 371, 581–605 (2018)MathSciNetMATH Kou, J., Sun, S.: Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng–Robinson equation of state. J. Comput. Phys. 371, 581–605 (2018)MathSciNetMATH
38.
go back to reference Kou, J., Sun, S.: Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state. Comput. Methods Appl. Mech. Eng. 341, 221–248 (2018)MathSciNet Kou, J., Sun, S.: Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state. Comput. Methods Appl. Mech. Eng. 341, 221–248 (2018)MathSciNet
39.
go back to reference Li, H., Ju, L., Zhang, C., Peng, Q.: Unconditionally energy stable linear schemes for the diffuse interface model with Peng–Robinson equation of state. J. Sci. Comput. 75(2), 993–1015 (2018)MathSciNetMATH Li, H., Ju, L., Zhang, C., Peng, Q.: Unconditionally energy stable linear schemes for the diffuse interface model with Peng–Robinson equation of state. J. Sci. Comput. 75(2), 993–1015 (2018)MathSciNetMATH
40.
go back to reference Li, Y., Choi, Y., Kim, J.: Computationally efficient adaptive time step method for the Cahn–Hilliard equation. Comput. Math. Appl. 73, 1855–1864 (2017)MathSciNetMATH Li, Y., Choi, Y., Kim, J.: Computationally efficient adaptive time step method for the Cahn–Hilliard equation. Comput. Math. Appl. 73, 1855–1864 (2017)MathSciNetMATH
41.
go back to reference Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62, 601–622 (2015)MathSciNetMATH Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62, 601–622 (2015)MathSciNetMATH
42.
go back to reference Ma, L., Chen, R., Yang, X., Zhang, H.: Numerical approximations for Allen–Cahn type phase field model of two-phase incompressible fluids with moving contact lines. Commun. Comput. Phys. 21, 867–889 (2017)MathSciNet Ma, L., Chen, R., Yang, X., Zhang, H.: Numerical approximations for Allen–Cahn type phase field model of two-phase incompressible fluids with moving contact lines. Commun. Comput. Phys. 21, 867–889 (2017)MathSciNet
43.
go back to reference Peng, D., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976) Peng, D., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976)
44.
go back to reference Peng, Q.: A convex-splitting scheme for a diffuse interface model with Peng–Robinson equation of state. Adv. Appl. Math. Mech. 9(5), 1162–1188 (2017)MathSciNet Peng, Q.: A convex-splitting scheme for a diffuse interface model with Peng–Robinson equation of state. Adv. Appl. Math. Mech. 9(5), 1162–1188 (2017)MathSciNet
45.
go back to reference Qiao, Z., Sun, S.: Two-phase fluid simulation using a diffuse interface model with Peng–Robinson equation of state. SIAM J. Sci. Comput. 36(4), B708–B728 (2014)MathSciNetMATH Qiao, Z., Sun, S.: Two-phase fluid simulation using a diffuse interface model with Peng–Robinson equation of state. SIAM J. Sci. Comput. 36(4), B708–B728 (2014)MathSciNetMATH
46.
go back to reference Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)MathSciNetMATH Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)MathSciNetMATH
47.
go back to reference Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)MathSciNetMATH Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)MathSciNetMATH
48.
go back to reference Shen, J., Wang, C., Wang, S., Wang, X.: Second-order convex splitting schemes for gradient flows with ehrlich-schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)MathSciNetMATH Shen, J., Wang, C., Wang, S., Wang, X.: Second-order convex splitting schemes for gradient flows with ehrlich-schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)MathSciNetMATH
49.
go back to reference Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetMATH Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetMATH
50.
go back to reference Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)MathSciNetMATH Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)MathSciNetMATH
51.
go back to reference Tang, T., Yang, J.: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. Comput. Math. 34(5), 451–461 (2016)MathSciNetMATH Tang, T., Yang, J.: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. Comput. Math. 34(5), 451–461 (2016)MathSciNetMATH
52.
go back to reference Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press, New York (2011)MATH Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press, New York (2011)MATH
53.
go back to reference Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)MathSciNetMATH Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)MathSciNetMATH
54.
go back to reference Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)MathSciNetMATH Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)MathSciNetMATH
55.
go back to reference Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)MathSciNetMATH Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)MathSciNetMATH
56.
go back to reference Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn–Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230, 6037–6060 (2011)MathSciNetMATH Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn–Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230, 6037–6060 (2011)MathSciNetMATH
57.
go back to reference Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)MathSciNetMATH Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)MathSciNetMATH
58.
go back to reference Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng. 345, 826–853 (2019)MathSciNet Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng. 345, 826–853 (2019)MathSciNet
59.
go back to reference Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Disc. Conti. Dyn. Sys.-B 11, 1057–1070 (2009)MathSciNetMATH Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Disc. Conti. Dyn. Sys.-B 11, 1057–1070 (2009)MathSciNetMATH
60.
go back to reference Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2019)MathSciNet Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2019)MathSciNet
61.
go back to reference Yang, X., Ju, L.: Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017) Yang, X., Ju, L.: Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)
62.
go back to reference Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetMATH Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetMATH
63.
go back to reference Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121 (2020)MathSciNet Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121 (2020)MathSciNet
64.
go back to reference Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229, 7361–7372 (2010)MathSciNetMATH Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229, 7361–7372 (2010)MathSciNetMATH
65.
go back to reference Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)MathSciNetMATH Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)MathSciNetMATH
66.
go back to reference Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng. 110, 279–300 (2017)MathSciNetMATH Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng. 110, 279–300 (2017)MathSciNetMATH
67.
go back to reference Zhao, J., Yang, X., Gong, Y., Zhao, X., Yang, X., Li, J., Wang, Q.: A general strategy for numerical approximations of non-equilibrium models-part I: thermodynamical systems. Int. J. Numer. Anal. Model. 15, 884–918 (2018)MathSciNetMATH Zhao, J., Yang, X., Gong, Y., Zhao, X., Yang, X., Li, J., Wang, Q.: A general strategy for numerical approximations of non-equilibrium models-part I: thermodynamical systems. Int. J. Numer. Anal. Model. 15, 884–918 (2018)MathSciNetMATH
68.
go back to reference Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Decoupled, energy stable schemes for a phase-field surfactant model. Comput. Phys. Commun. 233, 67–77 (2018)MathSciNet Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Decoupled, energy stable schemes for a phase-field surfactant model. Comput. Phys. Commun. 233, 67–77 (2018)MathSciNet
69.
go back to reference Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Numerical approximation of a phase-field surfactant model with fluid flow. J. Sci. Comput. 80, 223–247 (2019)MathSciNetMATH Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Numerical approximation of a phase-field surfactant model with fluid flow. J. Sci. Comput. 80, 223–247 (2019)MathSciNetMATH
70.
go back to reference Zhu, G., Chen, H., Yao, J., Sun, S.: Efficient energy-stable schemes for the hydrodynamics coupled phase-field model. Appl. Math. Model. 70, 82–108 (2019)MathSciNet Zhu, G., Chen, H., Yao, J., Sun, S.: Efficient energy-stable schemes for the hydrodynamics coupled phase-field model. Appl. Math. Model. 70, 82–108 (2019)MathSciNet
Metadata
Title
Stabilized Energy Factorization Approach for Allen–Cahn Equation with Logarithmic Flory–Huggins Potential
Authors
Xiuhua Wang
Jisheng Kou
Jianchao Cai
Publication date
01-02-2020
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2020
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01127-x

Other articles of this Issue 2/2020

Journal of Scientific Computing 2/2020 Go to the issue

Premium Partner