Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2017

19-09-2016 | Original Research

Stable manifolds results for planar Hadamard fractional differential equations

Authors: Mengmeng Li, JinRong Wang

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we investigate local stable manifold for planar Hadamard fractional differential equations. By adopting Lyapunov–Perron operator approach and establishing new estimation of Mittag-Leffler function associated with Hadamard fractional derivative, we derive another interesting local stable manifold theorem for our problem. Finally, an example is given to illustrate our theoretical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., New York (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., New York (2006)MATH
2.
go back to reference Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014)CrossRefMATH Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014)CrossRefMATH
3.
go back to reference Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)CrossRef Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)CrossRef
4.
go back to reference Diethelm, K.: The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics (2010) Diethelm, K.: The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics (2010)
5.
go back to reference Prudnikov, A.P., Brychkov, Yu.A, Marichev, O.I.: Integrals and Series, Elementary Functions, vol. 1. Nauka, Moscow (1981). (in Russian) Prudnikov, A.P., Brychkov, Yu.A, Marichev, O.I.: Integrals and Series, Elementary Functions, vol. 1. Nauka, Moscow (1981). (in Russian)
6.
go back to reference Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function \(E_{\alpha ,\beta }(z)\) and its derivative, Fract. Calc. Appl. Anal., 5, 491–518 (2002). Correction: Fract. Calc. Appl. Anal. 6, 111–112 (2003) Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function \(E_{\alpha ,\beta }(z)\) and its derivative, Fract. Calc. Appl. Anal., 5, 491–518 (2002). Correction: Fract. Calc. Appl. Anal. 6, 111–112 (2003)
7.
go back to reference Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)MATH Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)MATH
8.
go back to reference Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)MATH Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)MATH
9.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)MATH
10.
go back to reference Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000)CrossRefMATH Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000)CrossRefMATH
11.
go back to reference Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011) Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)
12.
go back to reference Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)CrossRefMATH Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)CrossRefMATH
13.
go back to reference Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)MathSciNetCrossRefMATH Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)MathSciNetCrossRefMATH
14.
go back to reference Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252, 6163–6174 (2012)MathSciNetCrossRefMATH Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252, 6163–6174 (2012)MathSciNetCrossRefMATH
15.
go back to reference Wang, J., Fečkan, M., Zhou, Y.: Presentation of solutions of impulsive fractional Langevin equations and existence results. Eur. Phys. J. Special Top. 222, 1855–1872 (2013) Wang, J., Fečkan, M., Zhou, Y.: Presentation of solutions of impulsive fractional Langevin equations and existence results. Eur. Phys. J. Special Top. 222, 1855–1872 (2013)
16.
go back to reference Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 263, 476–510 (2012)MathSciNetCrossRefMATH Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 263, 476–510 (2012)MathSciNetCrossRefMATH
17.
go back to reference Debbouche, A., Torres, D.F.M.: Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. Int. J. Control 86, 949–963 (2013)MathSciNetCrossRefMATH Debbouche, A., Torres, D.F.M.: Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. Int. J. Control 86, 949–963 (2013)MathSciNetCrossRefMATH
18.
go back to reference de Carvalho-Neto, P.M., Planas, G.: Mild solutions to the time fractional Navier–Stokes equations in \(\mathbb{R}^N\). J. Differ. Equ. 259, 2948–2980 (2015)MathSciNetCrossRefMATH de Carvalho-Neto, P.M., Planas, G.: Mild solutions to the time fractional Navier–Stokes equations in \(\mathbb{R}^N\). J. Differ. Equ. 259, 2948–2980 (2015)MathSciNetCrossRefMATH
19.
go back to reference Liu, Z., Li, X.: Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives. SIAM J. Control Optim. 53, 1920–1933 (2015)MathSciNetCrossRefMATH Liu, Z., Li, X.: Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives. SIAM J. Control Optim. 53, 1920–1933 (2015)MathSciNetCrossRefMATH
20.
go back to reference Cong, N.D., Doan, T.S., Siegmund, S., Tuan, H.T.: On stable manifolds for planar fractional differential equations. Appl. Math. Comput. 226, 157–168 (2014)MathSciNetMATH Cong, N.D., Doan, T.S., Siegmund, S., Tuan, H.T.: On stable manifolds for planar fractional differential equations. Appl. Math. Comput. 226, 157–168 (2014)MathSciNetMATH
21.
go back to reference Klimek, M.: Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 16, 4689–4697 (2011)MathSciNetCrossRefMATH Klimek, M.: Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 16, 4689–4697 (2011)MathSciNetCrossRefMATH
22.
go back to reference Wang, J., Zhou, Y., Medved, M.: Existence and stability of fractional differential equations with Hadamard derivative. Topol. Methods Nonlinear Anal. 41, 113–133 (2013) Wang, J., Zhou, Y., Medved, M.: Existence and stability of fractional differential equations with Hadamard derivative. Topol. Methods Nonlinear Anal. 41, 113–133 (2013)
23.
go back to reference Ma, Q., Wang, J., Wang, R., Ke, X.: Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Lett. 36, 7–13 (2014)MathSciNetCrossRefMATH Ma, Q., Wang, J., Wang, R., Ke, X.: Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Lett. 36, 7–13 (2014)MathSciNetCrossRefMATH
24.
go back to reference Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–445 (2014)MathSciNetMATH Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–445 (2014)MathSciNetMATH
25.
go back to reference Ahmad, B., Ntouyas, S.K.: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Frac. Calc. Appl. Anal. 17, 348–360 (2014)MathSciNetMATH Ahmad, B., Ntouyas, S.K.: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Frac. Calc. Appl. Anal. 17, 348–360 (2014)MathSciNetMATH
26.
go back to reference Ahmad, B., Ntouyas, S.K.: On Hadamard fractional integrodifferential boundary value problems. J. Appl. Math. Comput. 47, 119–131 (2015)MathSciNetCrossRefMATH Ahmad, B., Ntouyas, S.K.: On Hadamard fractional integrodifferential boundary value problems. J. Appl. Math. Comput. 47, 119–131 (2015)MathSciNetCrossRefMATH
27.
go back to reference Ahmad, B., Ntouyas, S.K.: Initial value problems of fractional order Hadamard-type functional differential equations. Electron. J. Differ. Equ. 77, 1–9 (2015)MathSciNetMATH Ahmad, B., Ntouyas, S.K.: Initial value problems of fractional order Hadamard-type functional differential equations. Electron. J. Differ. Equ. 77, 1–9 (2015)MathSciNetMATH
28.
go back to reference Wang, J., Zhang, Y.: On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 39, 85–90 (2015)MathSciNetCrossRefMATH Wang, J., Zhang, Y.: On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 39, 85–90 (2015)MathSciNetCrossRefMATH
29.
go back to reference Li, M., Wang, J.: Analysis of nonlinear Hadamard fractional differential equations via properties of Mittag-Leffler functions. J. Appl. Math. Comput. 51, 487–508 (2016)MathSciNetCrossRefMATH Li, M., Wang, J.: Analysis of nonlinear Hadamard fractional differential equations via properties of Mittag-Leffler functions. J. Appl. Math. Comput. 51, 487–508 (2016)MathSciNetCrossRefMATH
Metadata
Title
Stable manifolds results for planar Hadamard fractional differential equations
Authors
Mengmeng Li
JinRong Wang
Publication date
19-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2017
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-016-1054-3

Other articles of this Issue 1-2/2017

Journal of Applied Mathematics and Computing 1-2/2017 Go to the issue

Premium Partner