Skip to main content
Top

2016 | OriginalPaper | Chapter

2. State of the Art of Modelling and Simulation of the Physiological Systems

Author : Yar M. Mughal (Yar Muhammad)

Published in: A Parametric Framework for Modelling of Bioelectrical Signals

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reviews the physiology of the cardiovascular system in order to understand its main mechanisms and parameters, which are of interest in this work. This chapter also describes other researchers’ approaches to developing cardiovascular system models as well as three simulation examples, namely (a) a cardiovascular simulator (“CVSim”), (b) a software tool for analysing breathing-related errors in transthoracic electrical bio-impedance spectroscopy measurements, and (c) simulation of lung edema in impedance cardiography.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The medulla oblongata is the lower half of the brainstem, which is continuous with the spinal cord, the upper half being the pons. It is mostly related to the medulla. The medulla covers the cardiac, respiratory, vomiting, and vasomotor centre, and hence deals with the autonomic (involuntary) functions of heart rate, breathing, and blood pressure.
 
2
The vasomotor centre (VMC) is a part of the medulla oblongata, which regulates the blood pressure and other homeostatic processes.
 
3
The BISS acronym is also used by Andrei Krivoshei (a researcher at Tallinn University of Technology, Estonia) in his published paper, “A Bio-Impedance Signal Synthesiser (BISS) for Testing of an Adaptive Filtering System” (Krivoshei 2006)). In his work, BISS stands for Bio-Impedance Signal Synthesizer . In this work, BISS stands for Bio-Impedance Signal Simulator.
 
Literature
go back to reference Baker, K., Hill, D., Pale, T.: Comparison of several pulse-pressure tech. for monitoring stroke volume. Med. Biol. Eng. 12, 81–88 (1974)CrossRef Baker, K., Hill, D., Pale, T.: Comparison of several pulse-pressure tech. for monitoring stroke volume. Med. Biol. Eng. 12, 81–88 (1974)CrossRef
go back to reference Campbell, K., et al.: A pulsatile cardiovascular computer model for teaching heart-blood vessel interaction. Physiologist 25(3), 155–162 (1982) Campbell, K., et al.: A pulsatile cardiovascular computer model for teaching heart-blood vessel interaction. Physiologist 25(3), 155–162 (1982)
go back to reference Chen, X., et al.: Estimation of the total peripheral resistance baroreflex impulse response from spontaneous hemodynamic variability. Am. J. Physiol. 294(1), 293–301 (2008) Chen, X., et al.: Estimation of the total peripheral resistance baroreflex impulse response from spontaneous hemodynamic variability. Am. J. Physiol. 294(1), 293–301 (2008)
go back to reference Cotter, G., et al.: Impedance cardiography revisited. Physiol. Meas. 27, 817–827 (2006)CrossRef Cotter, G., et al.: Impedance cardiography revisited. Physiol. Meas. 27, 817–827 (2006)CrossRef
go back to reference Deborah, R., Alvater, R.: Impedance Cardiography Mentor Resource Guide (2002) Deborah, R., Alvater, R.: Impedance Cardiography Mentor Resource Guide (2002)
go back to reference Defares, J., Osbome, J., Hara, H.: Theoretical synthesis of the cardiovascular system. Study I: the controlled system. Acta. Physiol. Pharm. Neerl. 12, 189–265 (1963) Defares, J., Osbome, J., Hara, H.: Theoretical synthesis of the cardiovascular system. Study I: the controlled system. Acta. Physiol. Pharm. Neerl. 12, 189–265 (1963)
go back to reference Grodins, F.S.: Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q. Rev. Biol. 34(2), 93–116 (1959)CrossRef Grodins, F.S.: Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q. Rev. Biol. 34(2), 93–116 (1959)CrossRef
go back to reference Karnegis, Y., Kubicek, W.: Physiological correlates of the cardiac thoracic impedance waveform. Am. Heart J. 79, 519–523 (1970)CrossRef Karnegis, Y., Kubicek, W.: Physiological correlates of the cardiac thoracic impedance waveform. Am. Heart J. 79, 519–523 (1970)CrossRef
go back to reference Katz, S., et al.: Computer simulation in the physiology student laboratory. Physiologist 21(6), 41–44 (1978) Katz, S., et al.: Computer simulation in the physiology student laboratory. Physiologist 21(6), 41–44 (1978)
go back to reference Kauppinen, P., Hyttinen, J., Malmivuo, J.: Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann. Biomed. Eng. 26, 694–702 (1998)CrossRef Kauppinen, P., Hyttinen, J., Malmivuo, J.: Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann. Biomed. Eng. 26, 694–702 (1998)CrossRef
go back to reference Kauppinen, P.K., et al.: Lead field theoretical approach in bioimpedance measurements: towards more controlled measurement sensitivity. Ann. N. Y. Acad. Sci. 873, 135–142 (1999)CrossRef Kauppinen, P.K., et al.: Lead field theoretical approach in bioimpedance measurements: towards more controlled measurement sensitivity. Ann. N. Y. Acad. Sci. 873, 135–142 (1999)CrossRef
go back to reference Kersulyte, G., Navickas, Z., Raudonis, V.: Investigation of complexity of extraction accuracy modeling cardio signals in two ways. In: Proceedings of the 5th IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS’2009, pp. 462–467 (2009) Kersulyte, G., Navickas, Z., Raudonis, V.: Investigation of complexity of extraction accuracy modeling cardio signals in two ways. In: Proceedings of the 5th IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS’2009, pp. 462–467 (2009)
go back to reference Krivošei, A.: Model Based Method for Adaptive Decomposition of the Thoracic Bio-impedance Variations into Cardiac and Respiratory Components. Ph.D Thesis. University of Technology, Tallinn (2009) Krivošei, A.: Model Based Method for Adaptive Decomposition of the Thoracic Bio-impedance Variations into Cardiac and Respiratory Components. Ph.D Thesis. University of Technology, Tallinn (2009)
go back to reference Kubicek, W., Kottke, F., Ramos, M.: The Minnesota impedance cardiograph-Theory & appl. Biomed. Eng. 9, 410–416 (1974) Kubicek, W., Kottke, F., Ramos, M.: The Minnesota impedance cardiograph-Theory & appl. Biomed. Eng. 9, 410–416 (1974)
go back to reference Lamberts, R., Visser, K., Zijlstra, W.: Impedance Cardiography (1984) Lamberts, R., Visser, K., Zijlstra, W.: Impedance Cardiography (1984)
go back to reference Lu, Z., Mukkamala, R.: Monitoring left ventricular contractility from respiratory-induced blood pressure variability. Comput. Cardiol. 31, 705–708 (2004) Lu, Z., Mukkamala, R.: Monitoring left ventricular contractility from respiratory-induced blood pressure variability. Comput. Cardiol. 31, 705–708 (2004)
go back to reference Lu, Z., Mukkamala, R.: Non-invasive monitoring of left ventricular contractility and ventilatory mechanics. In: 27th Annual Conference of the IEEE Engineering in Medicine and Biology Society. pp. 7636–7639 (2005) Lu, Z., Mukkamala, R.: Non-invasive monitoring of left ventricular contractility and ventilatory mechanics. In: 27th Annual Conference of the IEEE Engineering in Medicine and Biology Society. pp. 7636–7639 (2005)
go back to reference Malmivuo, J., Plonsey, R: Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press (1995) Malmivuo, J., Plonsey, R: Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press (1995)
go back to reference Matušek, A., Provazník, I., Fontecave-Jallon, J.: Modelling of Impedance Cardiac Signals (2012) Matušek, A., Provazník, I., Fontecave-Jallon, J.: Modelling of Impedance Cardiac Signals (2012)
go back to reference Mohapatra, S.: Noninvasive Cardiovascular Monitoring of Electrical Impedance Technique, London (1981) Mohapatra, S.: Noninvasive Cardiovascular Monitoring of Electrical Impedance Technique, London (1981)
go back to reference Mohapatra, S., 1988. Impedance cardiography. In: Encyclopedia of Medical Devices and Instrument. Wiley, New York Mohapatra, S., 1988. Impedance cardiography. In: Encyclopedia of Medical Devices and Instrument. Wiley, New York
go back to reference Mughal, Y.M.: Conversation with Paul Annus, Tallinn University of Technology (2012) Mughal, Y.M.: Conversation with Paul Annus, Tallinn University of Technology (2012)
go back to reference Mughal, Y.M., Krivoshei, A., Annus, P.: Separation of cardiac and respiratory components from the electrical bio-impedance signal using PCA and fast ICA. In: International Conference on Control Engineering & Information Technology (CEIT’13). Sousse, Tunisia, pp. 153–156 (2013). http://arxiv.org/abs/1307.0915, Accessed 12 Nov 2014 Mughal, Y.M., Krivoshei, A., Annus, P.: Separation of cardiac and respiratory components from the electrical bio-impedance signal using PCA and fast ICA. In: International Conference on Control Engineering & Information Technology (CEIT’13). Sousse, Tunisia, pp. 153–156 (2013). http://​arxiv.​org/​abs/​1307.​0915, Accessed 12 Nov 2014
go back to reference Mughal, Y.M. et al.: An overview of the impedance models of the thorax and the origin of the impedance cardiography signal and modeling of the impedance signals. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES 2014) (2014) Mughal, Y.M. et al.: An overview of the impedance models of the thorax and the origin of the impedance cardiography signal and modeling of the impedance signals. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES 2014) (2014)
go back to reference Mughal, Y.M. et al.: Development of a bio-impedance signal simulator on the basis of the regression based model of the cardiac and respiratory impedance signals. In: Mindedal, H., Persson, M., (eds.) 16th Nordic-Baltic Conference on Biomedical Engineering. IFMBE Proceedings, Springer International Publishing, Gothenburg, pp. 92–95 (2015). http://link.springer.com/10.1007/978-3-319-12967-9, Accessed 12 Nov 2014 Mughal, Y.M. et al.: Development of a bio-impedance signal simulator on the basis of the regression based model of the cardiac and respiratory impedance signals. In: Mindedal, H., Persson, M., (eds.) 16th Nordic-Baltic Conference on Biomedical Engineering. IFMBE Proceedings, Springer International Publishing, Gothenburg, pp. 92–95 (2015). http://​link.​springer.​com/​10.​1007/​978-3-319-12967-9, Accessed 12 Nov 2014
go back to reference Mukkamala, R., Cohen, R.: A forward model-based validation of cardiovascular system identification. Am. J. Physiol. 281(6), 2714–2730 (2001) Mukkamala, R., Cohen, R.: A forward model-based validation of cardiovascular system identification. Am. J. Physiol. 281(6), 2714–2730 (2001)
go back to reference Mukkamala, R., Toska, K., Cohen, R.: Noninvasive identification of the total peripheral resistance baroreflex. Am. J. Physiol. 284(3), 947–959 (2003) Mukkamala, R., Toska, K., Cohen, R.: Noninvasive identification of the total peripheral resistance baroreflex. Am. J. Physiol. 284(3), 947–959 (2003)
go back to reference Parati, G. et al.: European society of hypertension guidelines for blood pressure monitoring at home: a summary report of the second international consensus conference on home blood pressure monitoring. J Hypertens. 26(8), 1505–1526. http://www.ncbi.nlm.nih.gov/pubmed/18622223 (2008). Accessed 26 Nov 2014 Parati, G. et al.: European society of hypertension guidelines for blood pressure monitoring at home: a summary report of the second international consensus conference on home blood pressure monitoring. J Hypertens. 26(8), 1505–1526. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18622223 (2008). Accessed 26 Nov 2014
go back to reference Patterson, R.: Source of the thoracic cardiogenic electrical impedance signal as determined by a model. Med. Biol. Eng. Comput 23, 411–417 (1985)CrossRef Patterson, R.: Source of the thoracic cardiogenic electrical impedance signal as determined by a model. Med. Biol. Eng. Comput 23, 411–417 (1985)CrossRef
go back to reference Patterson, R.: Impedance cardiography: what is the source of the signal? In: International Conference on Electrical Bioimpedance, pp. 1–4 (2010) Patterson, R.: Impedance cardiography: what is the source of the signal? In: International Conference on Electrical Bioimpedance, pp. 1–4 (2010)
go back to reference Patterson, R., Wang, L., Weigh, Mc: Impedance cardiography: The failure of sternal electrodes to predict changes in stroke volume. Biol. Psychol. 36, 33–41 (1993)CrossRef Patterson, R., Wang, L., Weigh, Mc: Impedance cardiography: The failure of sternal electrodes to predict changes in stroke volume. Biol. Psychol. 36, 33–41 (1993)CrossRef
go back to reference Penny, B.: Theory and cardiac applications of electrical impedance measurements. CRC Crit. Rev. Bioeng 13, 227–281 (1986) Penny, B.: Theory and cardiac applications of electrical impedance measurements. CRC Crit. Rev. Bioeng 13, 227–281 (1986)
go back to reference Sakamoto, K., Kania, H.: Electrical characteristics of flowing blood. IEEE Trans. Biomed. Eng. 26, 686–695 (1979)CrossRef Sakamoto, K., Kania, H.: Electrical characteristics of flowing blood. IEEE Trans. Biomed. Eng. 26, 686–695 (1979)CrossRef
go back to reference Santos, N. et al.: Opto-electronic plethysmography: noninvasive and accurate measurement of the volume of the chest wall and its different thoraco-abdominal compartments, pp. 147–150 (2013) Santos, N. et al.: Opto-electronic plethysmography: noninvasive and accurate measurement of the volume of the chest wall and its different thoraco-abdominal compartments, pp. 147–150 (2013)
go back to reference Sörnmo, L., Laguna, P.: Model Based Method for Adaptive Decomposition of the Thoracic Bio-impedance Variations into Cardiac and Respiratory Components. Elsevier Academic Press (2005) Sörnmo, L., Laguna, P.: Model Based Method for Adaptive Decomposition of the Thoracic Bio-impedance Variations into Cardiac and Respiratory Components. Elsevier Academic Press (2005)
go back to reference Sunagawa, K., Sagawa, K.: Models of ventricular contraction based on time-varying elastance. Crit. Rev. Biomed. Eng. 7(3), 193228 (1982) Sunagawa, K., Sagawa, K.: Models of ventricular contraction based on time-varying elastance. Crit. Rev. Biomed. Eng. 7(3), 193228 (1982)
go back to reference Thompson, F., Joekes, A.: Thoracic impedance cardiodynamic assessment: validation in clinical use, London (1981) Thompson, F., Joekes, A.: Thoracic impedance cardiodynamic assessment: validation in clinical use, London (1981)
go back to reference Trolla, J., Vedru, J.: On the safety of foucault cardiography. In: XI International Conference Electrical Bio-impedance. Oslo, pp. 649–652 (2001) Trolla, J., Vedru, J.: On the safety of foucault cardiography. In: XI International Conference Electrical Bio-impedance. Oslo, pp. 649–652 (2001)
go back to reference Ulbrich, M., et al.: Simulation of lung edema in impedance cardiography. Comput. Cardiol. 39(1), 33–36 (2012)MathSciNet Ulbrich, M., et al.: Simulation of lung edema in impedance cardiography. Comput. Cardiol. 39(1), 33–36 (2012)MathSciNet
go back to reference Wang, L., Patterson, R.: Multiple source of the impedance cardiogram based on 3-D finite difference human thorax models. IEEE Trans. Biomed. Eng. 42(2), 141–148 (1995)CrossRef Wang, L., Patterson, R.: Multiple source of the impedance cardiogram based on 3-D finite difference human thorax models. IEEE Trans. Biomed. Eng. 42(2), 141–148 (1995)CrossRef
go back to reference Wang, L., Patterson, R., Raza, B.: Respiratory effects on cardiac related impedance indices measured under voluntary cardio-respiratory synchronization. Med. Biol. Eng Comput. 29, 505–510 (1991)CrossRef Wang, L., Patterson, R., Raza, B.: Respiratory effects on cardiac related impedance indices measured under voluntary cardio-respiratory synchronization. Med. Biol. Eng Comput. 29, 505–510 (1991)CrossRef
go back to reference Wittoe, D, Kottke, F.: The origin of cardiogenic changes in thoracic electrical impedance (del Z). In: Federation Proceedings (1967) Wittoe, D, Kottke, F.: The origin of cardiogenic changes in thoracic electrical impedance (del Z). In: Federation Proceedings (1967)
go back to reference Woltjer, H.H., Bogaard, H.J., de Vries, P.M.: The technique of impedance cardiography. Eur. Heart J. 18, 1396–1403 (1997)CrossRef Woltjer, H.H., Bogaard, H.J., de Vries, P.M.: The technique of impedance cardiography. Eur. Heart J. 18, 1396–1403 (1997)CrossRef
go back to reference Wu, H. et al.: Three dimensional electrical impedance tomography in thorax complete model. In: Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2008, pp. 466–469 (2008) Wu, H. et al.: Three dimensional electrical impedance tomography in thorax complete model. In: Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2008, pp. 466–469 (2008)
go back to reference Xu, D., et al.: Improved pulse transit time estimation by system identification analysis of proximal and distal arterial waveforms. AJP: Heart Circulatory Physiol. 301, H1389–H1395 (2011) Xu, D., et al.: Improved pulse transit time estimation by system identification analysis of proximal and distal arterial waveforms. AJP: Heart Circulatory Physiol. 301, H1389–H1395 (2011)
Metadata
Title
State of the Art of Modelling and Simulation of the Physiological Systems
Author
Yar M. Mughal (Yar Muhammad)
Copyright Year
2016
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-969-1_2