Skip to main content
Top
Published in: Archive of Applied Mechanics 2/2021

03-11-2020 | Original

Steady-state antiplane crack considering the flexoelectrics effect: surface waves and flexoelectric metamaterials

Authors: Antonios E. Giannakopoulos, Thanasis Zisis

Published in: Archive of Applied Mechanics | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The antiplane dynamic flexoelectric problem is stated as a dielectric solid that incorporates gradients of electric polarization and flexoelectricity due to strain gradients. The work examines dielectric materials without piezoelectric coupling or nonlinear ferroelectric switching and considers the inverse flexoelectric effect. It is shown that the coupling of the mechanical with the electrical problem can be condensed in a single mechanical problem that falls in the area of dynamic couple stress elasticity. Moreover, static and steady state dynamic antiplane problems of flexoelectric and couple stress elastic materials can be modeled as anisotropic plates with a non-equal biaxial pre-stress. This analogy was materialized in a finite element code. In this work, we solved the steady-state problem of a semi-infinite antiplane crack located in the middle of an infinite flexoelectric material, with its crack-tip moving with constant velocity. The particular type of loading investigated serves to relate the present solutions with known results from classic elastodynamics. We investigated the influence of various parameters such as the shear wave velocity and two naturally emerging microstructural and micro-inertia lengths. In the context of flexoelectricity, the two lengths are due to the interplay of the elastic and the flexoelectric parameters. Furthermore, we investigated the subsonic and the supersonic steady state crack rupture and showed that the Mach cones depend on the microstructural as well as the micro-inertial lengths. An important finding of this work is the existence of surface waves of Bleustein–Gulyaev type that do not appear in classic elastodynamics, but have been found in piezoelectric materials. The case of dielectric metamaterials with negative electric susceptibility is examined for the first time. The results can be useful for other dispersive materials, provided we identify the pertinent microstructural and micro-inertial lengths in accord with the behavior of the material at high frequencies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference ABAQUS, version 6.12: User’s Manual. Hibbit, Karlsson and Sorensen Inc., Pawtucket (2012) ABAQUS, version 6.12: User’s Manual. Hibbit, Karlsson and Sorensen Inc., Pawtucket (2012)
2.
go back to reference Abdollahi, A., Peco, C., Millan, D., Arroyo, M., Catalan, G., Arias, I.: Fracture toughening and toughness asymmetry induced by flexoelectricity. Phys. Rev. B Condens. Matter Mater. Phys. 92, 094101 (2015) Abdollahi, A., Peco, C., Millan, D., Arroyo, M., Catalan, G., Arias, I.: Fracture toughening and toughness asymmetry induced by flexoelectricity. Phys. Rev. B Condens. Matter Mater. Phys. 92, 094101 (2015)
3.
go back to reference Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)MATH Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)MATH
4.
go back to reference Aki, K., Richards, P.G.: Qualitative Seismology, vol. II. W.H. Freeman, New York (1980) Aki, K., Richards, P.G.: Qualitative Seismology, vol. II. W.H. Freeman, New York (1980)
5.
go back to reference Arakawa, M., Maeno, N., Higa, M.: Direct observations of growing cracks in ice. J. Geophys. Res. 100(E4), 7539–7547 (1995) Arakawa, M., Maeno, N., Higa, M.: Direct observations of growing cracks in ice. J. Geophys. Res. 100(E4), 7539–7547 (1995)
6.
go back to reference Askar, A., Lee, P.C.Y., Cakmak, A.S.: Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient. Phys. Rev. B 1, 3525–3537 (1970) Askar, A., Lee, P.C.Y., Cakmak, A.S.: Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient. Phys. Rev. B 1, 3525–3537 (1970)
7.
go back to reference Baer, R.L., Flory, C.A., Tom-Moy, M., Solomon, D.S.: STW chemical sensors. In: IEEE Ultrasonics Symposium, pp. 293–298 (1992) Baer, R.L., Flory, C.A., Tom-Moy, M., Solomon, D.S.: STW chemical sensors. In: IEEE Ultrasonics Symposium, pp. 293–298 (1992)
8.
go back to reference Barrett, J.H.: Dielectric constant in perovskite type crystals. Phys. Rev. 86, 118–120 (1952) Barrett, J.H.: Dielectric constant in perovskite type crystals. Phys. Rev. 86, 118–120 (1952)
9.
go back to reference Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968) Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)
10.
go back to reference Brillouin, L.: Wave Propagation in Periodic Structures. McGraw-Hill, New York (1946)MATH Brillouin, L.: Wave Propagation in Periodic Structures. McGraw-Hill, New York (1946)MATH
11.
go back to reference Broberg, K.B.: Cracks and Fracture. Academic Press, San Diego (1999) Broberg, K.B.: Cracks and Fracture. Academic Press, San Diego (1999)
12.
go back to reference Broberg, K.B.: The near-tip field at high crack velocities. Int. J. Fract. 39, 1–13 (1989) Broberg, K.B.: The near-tip field at high crack velocities. Int. J. Fract. 39, 1–13 (1989)
13.
go back to reference Chen, Y., Lee, J.D., Eskandarian, A.: Examining the physical foundation of continuum theories from the view point of phonon dispersion relation. Int. J. Eng. Sci. 41, 61–83 (2003)MATH Chen, Y., Lee, J.D., Eskandarian, A.: Examining the physical foundation of continuum theories from the view point of phonon dispersion relation. Int. J. Eng. Sci. 41, 61–83 (2003)MATH
14.
go back to reference Courant, R., Lax, A.: Remarks on Couchy’s problem for hyperbolic partial differential equations with constant coefficients in several independent variables. Commun. Pure Appl. Math. VIII, 497–502 (1955)MATH Courant, R., Lax, A.: Remarks on Couchy’s problem for hyperbolic partial differential equations with constant coefficients in several independent variables. Commun. Pure Appl. Math. VIII, 497–502 (1955)MATH
15.
go back to reference Cordero-Edwards, K., Kianirad, H., Canalias, C., Sort, J., Catalan, G.: Flexoelectric fracture-ratchet effect in ferroelectrics. Phys. Rev. Lett. 122, 135502 (2019) Cordero-Edwards, K., Kianirad, H., Canalias, C., Sort, J., Catalan, G.: Flexoelectric fracture-ratchet effect in ferroelectrics. Phys. Rev. Lett. 122, 135502 (2019)
16.
go back to reference Craggs, J.W.: On the propagation of a crack in an elastic-brittle material. J. Mech. Phys. Solids 8, 66–75 (1960)MathSciNetMATH Craggs, J.W.: On the propagation of a crack in an elastic-brittle material. J. Mech. Phys. Solids 8, 66–75 (1960)MathSciNetMATH
17.
go back to reference Cross, L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006) Cross, L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)
18.
go back to reference Curran, D.R., Shockey, D.A., Winkler, S.: Crack propagation at supersonic velocities II. Theoretical model. Int. J. Fract. Mech. 6, 271–278 (1970) Curran, D.R., Shockey, D.A., Winkler, S.: Crack propagation at supersonic velocities II. Theoretical model. Int. J. Fract. Mech. 6, 271–278 (1970)
19.
go back to reference Dick, B.G., Overhouser, A.W.: Theory of dielectric constants of alkali halide crystals. Phys. Rev. 112, 90–103 (1958) Dick, B.G., Overhouser, A.W.: Theory of dielectric constants of alkali halide crystals. Phys. Rev. 112, 90–103 (1958)
20.
go back to reference Drafts, B.: Acoustic wave technology sensors. IEEE Trans. Microwave Theory Tech. 49, 795–802 (2001) Drafts, B.: Acoustic wave technology sensors. IEEE Trans. Microwave Theory Tech. 49, 795–802 (2001)
21.
go back to reference Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Kalinin, S.V.: Lost surface waves in nonpiezoelectric solids. Phys. Rev. B 96, 045411 (2017) Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Kalinin, S.V.: Lost surface waves in nonpiezoelectric solids. Phys. Rev. B 96, 045411 (2017)
22.
go back to reference Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J.F., Koschny, T., Soukoulis, C.M.: Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95(20), 203901 (2005) Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J.F., Koschny, T., Soukoulis, C.M.: Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95(20), 203901 (2005)
23.
go back to reference Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1998)MATH Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1998)MATH
24.
go back to reference Gavardinas, I.D., Giannakopoulos, A.E., Zisis, Th: A von Karman plate analogue for solving antiplane problems in couple stress and dipolar gradient elasticity. Int. J. Solids Struct. 148–149, 169–180 (2018) Gavardinas, I.D., Giannakopoulos, A.E., Zisis, Th: A von Karman plate analogue for solving antiplane problems in couple stress and dipolar gradient elasticity. Int. J. Solids Struct. 148–149, 169–180 (2018)
25.
go back to reference Georgiadis, H.G.: The mode III crack problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis. J. Appl. Mech. 70, 517–530 (2003)MATH Georgiadis, H.G.: The mode III crack problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis. J. Appl. Mech. 70, 517–530 (2003)MATH
26.
go back to reference Giannakopoulos, A.E., Zisis, Th: Uniformly moving screw dislocation in flexoelectric materials. Eur. J. Mech. A Solids 78–149, 103843 (2019)MathSciNetMATH Giannakopoulos, A.E., Zisis, Th: Uniformly moving screw dislocation in flexoelectric materials. Eur. J. Mech. A Solids 78–149, 103843 (2019)MathSciNetMATH
27.
go back to reference Gorishnyy, T., Ullal, C.K., Maldovan, M., Fytas, G., Thomas, E.L.: Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005) Gorishnyy, T., Ullal, C.K., Maldovan, M., Fytas, G., Thomas, E.L.: Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)
28.
go back to reference Gulyaev, YuV: Electroacoustic surface waves in solids. Zh. Eksp. Teor. Fiz. Pis’ma Red. 9, 63–65 (1969) Gulyaev, YuV: Electroacoustic surface waves in solids. Zh. Eksp. Teor. Fiz. Pis’ma Red. 9, 63–65 (1969)
29.
go back to reference Guozden, T.M., Jagla, E.A.: Supersonic crack propagation in a class of lattice models of mode III brittle fracture. Phys. Rev. Lett. 95, 2243022 (2005) Guozden, T.M., Jagla, E.A.: Supersonic crack propagation in a class of lattice models of mode III brittle fracture. Phys. Rev. Lett. 95, 2243022 (2005)
30.
go back to reference Guozden, T.M., Jagla, E.A., Marden, M.: Supersonic cracks in lattice models. Int. J. Fract. 162, 107–125 (2010)MATH Guozden, T.M., Jagla, E.A., Marden, M.: Supersonic cracks in lattice models. Int. J. Fract. 162, 107–125 (2010)MATH
31.
go back to reference Huller, A.: Soft phonon dispersion in \(\text{ BaTiO}_{\rm 3}\) Z. Physik 220, 145–158 (1969) Huller, A.: Soft phonon dispersion in \(\text{ BaTiO}_{\rm 3}\) Z. Physik 220, 145–158 (1969)
32.
go back to reference Ida, Y.: Cohesive force across the tip of a longitudinal shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972) Ida, Y.: Cohesive force across the tip of a longitudinal shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972)
33.
go back to reference Ida, Y., Aki, K.: Seismic source time function of propagating longitudinal-shear cracks. J. Geophys. Res. 77, 2034–2044 (1972) Ida, Y., Aki, K.: Seismic source time function of propagating longitudinal-shear cracks. J. Geophys. Res. 77, 2034–2044 (1972)
34.
go back to reference Indebom, V.L., Loginov, E.B., Osipov, M.A.: Flexoelectric effect and crystal structure. Krystallografiya 26(6), 157–1162 (1981) Indebom, V.L., Loginov, E.B., Osipov, M.A.: Flexoelectric effect and crystal structure. Krystallografiya 26(6), 157–1162 (1981)
35.
go back to reference Jackson, J.D.: Classical Electrodynamics. Willey, New York (1975)MATH Jackson, J.D.: Classical Electrodynamics. Willey, New York (1975)MATH
36.
go back to reference Jakata, K., Every, A.G.: Determination of the dispersive elastic constants of the cubic crystals Ge, Si, GaAs and InSb. Phys. Rev. B 77, 174301 (2008) Jakata, K., Every, A.G.: Determination of the dispersive elastic constants of the cubic crystals Ge, Si, GaAs and InSb. Phys. Rev. B 77, 174301 (2008)
37.
go back to reference Kildishev, A.V., Cai, W., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Shalaev, V.M.: Negative refractive index in optics of metal–dielectric composites. JOSA B 23(3), 423–433 (2006) Kildishev, A.V., Cai, W., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Shalaev, V.M.: Negative refractive index in optics of metal–dielectric composites. JOSA B 23(3), 423–433 (2006)
38.
go back to reference Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5(10), 2069–2070 (1964) Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5(10), 2069–2070 (1964)
39.
go back to reference Koo, J.H.: Negative electric susceptibility and magnetism from translational invariance and rotational invariance. J. Magn. Magn. Mater. 375, 106–110 (2015) Koo, J.H.: Negative electric susceptibility and magnetism from translational invariance and rotational invariance. J. Magn. Magn. Mater. 375, 106–110 (2015)
40.
go back to reference Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S.: Superprism phenomena in photonic crystals. Phys. Rev. B 58(16), R10096 (1998) Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S.: Superprism phenomena in photonic crystals. Phys. Rev. B 58(16), R10096 (1998)
41.
go back to reference Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83, 030801 (2016) Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83, 030801 (2016)
42.
go back to reference Kvasov, A., Tagantsev, A.K.: Dynamic flexoelectric effects in perovskites from first-principles calculations. Phys. Rev. B 92, 054104 (2015) Kvasov, A., Tagantsev, A.K.: Dynamic flexoelectric effects in perovskites from first-principles calculations. Phys. Rev. B 92, 054104 (2015)
43.
go back to reference Lin, B., Mear, M.E., Ravi-Chandar, K.: Criterion for initiation of cracks under mixed-mode I + III loading. Int. J. Fract 165(2), 175–188 (2010)MATH Lin, B., Mear, M.E., Ravi-Chandar, K.: Criterion for initiation of cracks under mixed-mode I + III loading. Int. J. Fract 165(2), 175–188 (2010)MATH
44.
go back to reference Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., Giessen, H.: Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7(1), 31–37 (2008) Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., Giessen, H.: Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7(1), 31–37 (2008)
45.
go back to reference Lu, M.H., Feng, L., Chen, Y.F.: Phononic crystals and acoustic metamaterials. Mater. Today 12(12), 34–42 (2009) Lu, M.H., Feng, L., Chen, Y.F.: Phononic crystals and acoustic metamaterials. Mater. Today 12(12), 34–42 (2009)
46.
go back to reference Luo, C., Ibanescu, M., Johnson, S.G., Joannopoulos, J.D.: Cerenkov radiation in photonic crystals. Science 299(5605), 368–371 (2003) Luo, C., Ibanescu, M., Johnson, S.G., Joannopoulos, J.D.: Cerenkov radiation in photonic crystals. Science 299(5605), 368–371 (2003)
47.
go back to reference Maerfeld, C., Gires, F., Tournois, P.: Bleustein–Gulyaev surface wave amplification in CdS. Appl. Phys. Lett. 18, 269–272 (1971) Maerfeld, C., Gires, F., Tournois, P.: Bleustein–Gulyaev surface wave amplification in CdS. Appl. Phys. Lett. 18, 269–272 (1971)
48.
go back to reference Majorkowska-Knap, K., Lenz, J.: Piezoelectric Love waves in non-classical elastic dielectrics. Int. J. Eng. Sci. 27, 879–893 (1989)MATH Majorkowska-Knap, K., Lenz, J.: Piezoelectric Love waves in non-classical elastic dielectrics. Int. J. Eng. Sci. 27, 879–893 (1989)MATH
49.
go back to reference Mao, S., Purohit, P.K.: Defects in fleoelectric solids. J. Mech. Phys. Solids 84, 95–115 (2015)MathSciNet Mao, S., Purohit, P.K.: Defects in fleoelectric solids. J. Mech. Phys. Solids 84, 95–115 (2015)MathSciNet
50.
go back to reference Mao, S., Purohit, P.K., Aravas, N.: Mixed finite-element formulations in piezoelectricity and flexoelectricity. Proc. R. Soc. A 472, 20150879 (2016)MathSciNetMATH Mao, S., Purohit, P.K., Aravas, N.: Mixed finite-element formulations in piezoelectricity and flexoelectricity. Proc. R. Soc. A 472, 20150879 (2016)MathSciNetMATH
51.
go back to reference Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in non-piezoelectric materials due to nanoscale nonlocal size effects: Green’s functions and embedded inclusions. Phys. Rev. B74.014110 (2006); Erratum: Piezoelectric thin-film super-lattices without using piezoelectric materials [J. Appl. Phys. 108, 024304 (2010)] N. D. Sharma, C. Landis, and P. Sharma Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in non-piezoelectric materials due to nanoscale nonlocal size effects: Green’s functions and embedded inclusions. Phys. Rev. B74.014110 (2006); Erratum: Piezoelectric thin-film super-lattices without using piezoelectric materials [J. Appl. Phys. 108, 024304 (2010)] N. D. Sharma, C. Landis, and P. Sharma
52.
go back to reference Maraganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504 (2007) Maraganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504 (2007)
53.
go back to reference Maraganti, R., Sharma, P.: Atomistic determination of flexoelectric properties in crystalline dielectrics. Phys. Rev. B 80, 054109 (2009) Maraganti, R., Sharma, P.: Atomistic determination of flexoelectric properties in crystalline dielectrics. Phys. Rev. B 80, 054109 (2009)
54.
go back to reference Marden, M., Liu, X.: Instability in lattice fracture. Phys. Rev. Lett. 71, 2417–2420 (1993) Marden, M., Liu, X.: Instability in lattice fracture. Phys. Rev. Lett. 71, 2417–2420 (1993)
55.
go back to reference Mashkevich, V.S., Tolpygo, K.B.: Electrical, optical and elastic properties of diamond type crystals. I. Sov. Phys. JETP 5, 435–439 (1957) Mashkevich, V.S., Tolpygo, K.B.: Electrical, optical and elastic properties of diamond type crystals. I. Sov. Phys. JETP 5, 435–439 (1957)
56.
go back to reference McClintock, F.A., Sukhatme, S.P.: Travelling cracks in elastic materials under longitudinal shear. J. Mech. Phys. Solids 8, 187–193 (1960)MathSciNetMATH McClintock, F.A., Sukhatme, S.P.: Travelling cracks in elastic materials under longitudinal shear. J. Mech. Phys. Solids 8, 187–193 (1960)MathSciNetMATH
57.
go back to reference Mindlin, R.D.: Polarization gradient in elastic dielectric. Int. J. Solids Struct. 4, 637–642 (1968)MATH Mindlin, R.D.: Polarization gradient in elastic dielectric. Int. J. Solids Struct. 4, 637–642 (1968)MATH
58.
go back to reference Mindlin, R.D.: Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Int. J. Solids Struct. 5, 1197–1208 (1969) Mindlin, R.D.: Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Int. J. Solids Struct. 5, 1197–1208 (1969)
59.
go back to reference Mindlin, R.D., Triesten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)MathSciNetMATH Mindlin, R.D., Triesten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)MathSciNetMATH
60.
go back to reference Mishuris, G., Piccolroaz, A., Radi, E.: Steady-state propagation of a mode III crack in couple stress elastic materials. Int. J. Eng. Sci. 61, 112–128 (2012)MathSciNetMATH Mishuris, G., Piccolroaz, A., Radi, E.: Steady-state propagation of a mode III crack in couple stress elastic materials. Int. J. Eng. Sci. 61, 112–128 (2012)MathSciNetMATH
61.
go back to reference Morini, L., Piccolroaz, A., Mishuris, G., Radi, E.: On fracture criteria for dynamic crack propagation in elastic materials with couple stresses. Int. J. Eng. Sci. 71, 45–61 (2013)MathSciNetMATH Morini, L., Piccolroaz, A., Mishuris, G., Radi, E.: On fracture criteria for dynamic crack propagation in elastic materials with couple stresses. Int. J. Eng. Sci. 71, 45–61 (2013)MathSciNetMATH
62.
go back to reference Morini, L., Piccolroaz, A., Mishuris, G.: Remarks on the energy release rate for an antiplane moving crack in couple stress elasticity. Int. J. Solids Struct. 51, 3087–3100 (2014) Morini, L., Piccolroaz, A., Mishuris, G.: Remarks on the energy release rate for an antiplane moving crack in couple stress elasticity. Int. J. Solids Struct. 51, 3087–3100 (2014)
63.
go back to reference Padilla, W.J., Basov, D.N., Smith, D.R.: Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006) Padilla, W.J., Basov, D.N., Smith, D.R.: Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006)
64.
go back to reference Padilla, W.J., Taylor, A.J., Highstrete, C., Lee, M., Averitt, R.D.: Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96(10), 107401 (2006) Padilla, W.J., Taylor, A.J., Highstrete, C., Lee, M., Averitt, R.D.: Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96(10), 107401 (2006)
65.
go back to reference Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999) Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999)
66.
go back to reference Pham, K.H., Ravi-Chandar, K.: Further examination of the criterion for crack initiation under mixed-mode I + III loading. Int. J. Fract. 189(2), 121–138 (2014) Pham, K.H., Ravi-Chandar, K.: Further examination of the criterion for crack initiation under mixed-mode I + III loading. Int. J. Fract. 189(2), 121–138 (2014)
67.
go back to reference Polyzos, D., Fotiadis, D.I.: Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012) Polyzos, D., Fotiadis, D.I.: Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)
68.
go back to reference Pouget, J., Askar, A., Maugin, G.A.: Lattice model for elastic ferroelectric crystal: continuum approximation. Phys. Rev. B 33, 6320–6325 (1986) Pouget, J., Askar, A., Maugin, G.A.: Lattice model for elastic ferroelectric crystal: continuum approximation. Phys. Rev. B 33, 6320–6325 (1986)
69.
go back to reference Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, 2nd edn. Springer, Berlin (2004)MATH Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, 2nd edn. Springer, Berlin (2004)MATH
70.
go back to reference Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26, 1231–1245 (1988) Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26, 1231–1245 (1988)
71.
go back to reference Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1(1), 41–48 (2007)MathSciNet Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1(1), 41–48 (2007)MathSciNet
72.
go back to reference Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S.: Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78(4), 489–491 (2001) Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S.: Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78(4), 489–491 (2001)
73.
go back to reference Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)MathSciNetMATH Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)MathSciNetMATH
74.
go back to reference Shirane, G., Nathans, R., Minkiewicz, V.J.: Temperature dependence of the soft ferroelectric mode in \(\text{ KTaO}_{\rm 3}\). Phys. Rev. 157, 157–399 (1960) Shirane, G., Nathans, R., Minkiewicz, V.J.: Temperature dependence of the soft ferroelectric mode in \(\text{ KTaO}_{\rm 3}\). Phys. Rev. 157, 157–399 (1960)
75.
go back to reference Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000) Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)
76.
go back to reference Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004) Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)
77.
go back to reference Stengel, M.: Unified ab initio formulation of flexolectricity and strain-gradient effects. Phys. Rev. B 93, 245107 (2016) Stengel, M.: Unified ab initio formulation of flexolectricity and strain-gradient effects. Phys. Rev. B 93, 245107 (2016)
78.
79.
go back to reference Suzuki, T., Sekiya, M., Sato, T., Takebayashi, Y.: Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband. Opt. Express 26(7), 8314–8324 (2018) Suzuki, T., Sekiya, M., Sato, T., Takebayashi, Y.: Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband. Opt. Express 26(7), 8314–8324 (2018)
80.
go back to reference Tagantsev, A.K.: Electric polarization in crystals and its response to thermal and elastic perturbations. Phase Transit. 35, 119–203 (1991) Tagantsev, A.K.: Electric polarization in crystals and its response to thermal and elastic perturbations. Phase Transit. 35, 119–203 (1991)
81.
go back to reference Vaks, V.G.: Phase transitions of the displacement type in ferroelectrics. Sov. Phys. JETP 27, 486–494 (1968) Vaks, V.G.: Phase transitions of the displacement type in ferroelectrics. Sov. Phys. JETP 27, 486–494 (1968)
82.
go back to reference Vardoulakis, I., Georgiadis, H.G.: SH surface waves in a homogeneous gradient-elastic half-space with surface energy. J. Elast. 47, 147–165 (1997)MathSciNetMATH Vardoulakis, I., Georgiadis, H.G.: SH surface waves in a homogeneous gradient-elastic half-space with surface energy. J. Elast. 47, 147–165 (1997)MathSciNetMATH
83.
go back to reference Vellekoop, M.J.: Acoustic wave sensor and their technology. Ultrasonics 36, 7–14 (1998) Vellekoop, M.J.: Acoustic wave sensor and their technology. Ultrasonics 36, 7–14 (1998)
84.
go back to reference Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. 10, 509–514 (1968) Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. 10, 509–514 (1968)
85.
go back to reference Wang, B., Gu, Y., Zhang, S., Chen, L.-Q.: Flexoelectricity in solids: progress, challenges and perspectives. Prog. Mater. Sci. 106, 100570 (2019) Wang, B., Gu, Y., Zhang, S., Chen, L.-Q.: Flexoelectricity in solids: progress, challenges and perspectives. Prog. Mater. Sci. 106, 100570 (2019)
86.
go back to reference Weber, W.: New bond-charge model for the lattice dynamics of diamond-type semiconductors. Phys. Rev. Lett. 33, 371–374 (1974) Weber, W.: New bond-charge model for the lattice dynamics of diamond-type semiconductors. Phys. Rev. Lett. 33, 371–374 (1974)
87.
go back to reference Weber, W.: Adiabatic bond charge model for the phonons in diamond, Si, Ge, and \(\alpha \)-Sn. Phys. Rev. B 15, 4789–4803 (1977) Weber, W.: Adiabatic bond charge model for the phonons in diamond, Si, Ge, and \(\alpha \)-Sn. Phys. Rev. B 15, 4789–4803 (1977)
88.
go back to reference White, R.M.: Surface elastic waves. Proc. IEEE 58, 1238–1276 (1970) White, R.M.: Surface elastic waves. Proc. IEEE 58, 1238–1276 (1970)
89.
go back to reference Winkler, S., Shokley, D.A., Curran, D.R.: Crack propagation at supersonic velocities. I Experiments. Int. Fract. Mech. 6, 151–158 (1970) Winkler, S., Shokley, D.A., Curran, D.R.: Crack propagation at supersonic velocities. I Experiments. Int. Fract. Mech. 6, 151–158 (1970)
90.
go back to reference Wolter, J.: Controllable parametric amplification of Bluestain–Gulyaev plate waves in Si-PXE 5 structures. Phys. Lett. 42A, 115–116 (1972) Wolter, J.: Controllable parametric amplification of Bluestain–Gulyaev plate waves in Si-PXE 5 structures. Phys. Lett. 42A, 115–116 (1972)
91.
go back to reference Wong, Z.J., Wang, Y., O’Brien, K., Rho, J., Yin, X., Zhang, S., Fang, N., Yen, T.J., Zhang, X.: Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J. Opt. 19(8), 084007 (2017) Wong, Z.J., Wang, Y., O’Brien, K., Rho, J., Yin, X., Zhang, S., Fang, N., Yen, T.J., Zhang, X.: Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J. Opt. 19(8), 084007 (2017)
92.
go back to reference Xia, K., Rosakis, A.J., Kanamon, H.: Laboratory earth quakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004) Xia, K., Rosakis, A.J., Kanamon, H.: Laboratory earth quakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)
93.
go back to reference Yamada, Y., Shirane, G.: Newton scattering and nature of the soft optical phonon in \(\text{ SrTiO}_{\rm 3}\). J. Phys. Soc. Jpn. 26, 396–403 (1969) Yamada, Y., Shirane, G.: Newton scattering and nature of the soft optical phonon in \(\text{ SrTiO}_{\rm 3}\). J. Phys. Soc. Jpn. 26, 396–403 (1969)
94.
go back to reference Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 43001 (2013) Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 43001 (2013)
95.
go back to reference Zhao, X., Soh, A.K.K.: The effect of flexoelectricity on domain switching in the vicinity of a crack in ferroelectrics. J. Eur. Ceram. Soc. 38, 141–1348 (2018) Zhao, X., Soh, A.K.K.: The effect of flexoelectricity on domain switching in the vicinity of a crack in ferroelectrics. J. Eur. Ceram. Soc. 38, 141–1348 (2018)
96.
go back to reference Zhou, J., Zhang, L., Tuttle, G., Koschny, T., Soukoulis, C.M.: Negative index materials using simple short wire pairs. Phys. Rev. B 73(4), 041101 (2006) Zhou, J., Zhang, L., Tuttle, G., Koschny, T., Soukoulis, C.M.: Negative index materials using simple short wire pairs. Phys. Rev. B 73(4), 041101 (2006)
97.
go back to reference Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013) Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013)
Metadata
Title
Steady-state antiplane crack considering the flexoelectrics effect: surface waves and flexoelectric metamaterials
Authors
Antonios E. Giannakopoulos
Thanasis Zisis
Publication date
03-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 2/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01815-y

Other articles of this Issue 2/2021

Archive of Applied Mechanics 2/2021 Go to the issue

Premium Partners