Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Steiner Trees with Other Cost Functions and Constraints

Authors : Marcus Brazil, Martin Zachariasen

Published in: Optimal Interconnection Trees in the Plane

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we look at Steiner tree problems that involve other cost functions and constraints (beyond those discussed in the first three chapters) but that still can be solved exactly by exploiting the geometric properties of minimal solutions. We focus particularly on four types of Steiner tree problems: the gradient-constrained Steiner tree problem, which serves as another example of an exactly solvable Steiner tree problem in a Minkowski plane with useful applications; the obstacle-avoiding Steiner tree problem, which is an important variation of the Steiner tree problem with applications in the physical design of microchips; bottleneck and other k-Steiner tree problems, where there is a given bound on the number of Steiner points; and Steiner tree problems optimising a cost associated with flow on the network.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This background on mining, which focusses on hard rock mines containing metallic deposits, is drawn primarily from [8] and [48]. For a more comprehensive introduction to the infrastructure of an underground mine see [186].
 
2
Some examples of the many heuristic approaches developed for the rectilinear obstacle-avoiding Steiner tree problem include the algorithms of Lin et al. [258], Long et al. [267], Li and Young [254], Liu et al. [262] and Ajwani et al. [5]. The last of these makes use of the FLUTE algorithm, described in Sect. 3.​4 Also of note is a graph-based approximation algorithm for the octilinear obstacle-avoiding Steiner tree problem proposed by Müller-Hannemann and Schulze [288].
 
3
For the equivalent result to Lemma 4.8 in the Euclidean plane, see for example [345].
 
4
One of the most important early references on the Euclidean problem with polygonal obstacles is the paper of Provan [317] on approximation schemes for this problem. Other early papers relating to the Euclidean problem include [350] and [391]. The key papers on algorithmic approaches to solving the exact problem are those of Winter [403] and Zachariasen and Winter [433].
 
5
Although numerous heuristics for the rectilinear minimum obstacle-avoiding Steiner tree problem have been developed, the literature on exact solutions is rather sparse. The first substantial results appear to be those of Ganley and Cohoon [163], who developed algorithms for solving instances with up to four terminals, using the so-called escape graph. More recently, Huang et al. [204, 208] presented a GeoSteiner-type algorithm able, in theory, to exactly solve instances of arbitrary size, using an approach similar to the one developed in this section. These methods were further refined and discussed by Juhl [225]. We note, however, that all of these previous results assume that the polygonal obstacles have boundary edges using only legal orientations, whereas we make no restrictions on the orientations of the boundary edges of obstacles in this section.
 
6
A slightly weaker version of this result has appeared in the literature, but only for the rectilinear Steiner tree problem, with rectilinear obstacles; see [205, 206, 208] and [225].
 
7
This application was first suggested by David Lee in his unpublished paper, ‘Some industrial case studies of Steiner trees’ presented at the NATO Advanced Research Workshop, ‘Topological Network Design: Analysis and Synthesis’, in Copenhagen, 1989.
 
8
The bottleneck Steiner tree problem was first proposed by Chiang et al. [96] in the context of Steiner trees in graphs, and was originally known as the Steiner min-max tree problem. There it was shown that this problem has a simple polynomial-time algorithm, in terms of the number of vertices and edges of the entire graph. However, in terms of the cardinality of the terminal set, Berman and Zelikovsky [28] have shown that the problem does not admit any polynomial-time approximation algorithm with performance ratio less than 2 unless P = NP. The Euclidean version of the geometric bottleneck k-Steiner tree problem in the plane, as defined in this chapter, was first studied by Du et al. in [139] and [384]. A survey of the results in this area up to 2008, with a focus on approximation algorithms, can be found in Chapter 6 of [134].
 
9
The algorithm developed in Sect. 4.3 for the general k-Steiner tree problem can in theory apply to a wider range of norms than the PE norms. The algorithm for these other norms will, however, be difficult to implement in practice. The precise required properties of the widest class of norms for which the algorithm can apply are given in [52].
 
10
Note that [21] gives a slightly weaker version of condition 3, the bound on the degree of Steiner points; in particular, for 1 and an upper bound of 7 rather than 5 is given. The bounds in [21] are based on the Hadwiger numbers of the unit balls, that is, the largest number of non-overlapping translates of the unit ball that can be brought into contact with it. However, for 1 and (each of which have polygonal unit balls) a tighter bound can be found by using Lemma 4.22 together with the arguments of Monma and Suri in [285].
 
11
This paper actually predates Gilbert’s seminal paper with Henry Pollak [179] on the Euclidean Steiner tree problem.
 
12
The problem of constructing a Steiner point in the weighted case (i.e., the weighted Fermat-Torricelli problem) was first solved, for the Euclidean plane, by Weber [390] in 1909. More details on the history and mathematics behind the general weighted Fermat-Torricelli problem (for Steiner points of degree ≥ 3) can be found in the surveys of Wesolowsky [396] and Kupitz and Martini [240]. A recent treatment of the Euclidean weighted Fermat-Torricelli problem for Steiner points of degree 3 can be found in a paper of Jalal and Krarup [222], where the problem is referred to as FERPOS.
 
13
Ptolemy’s theorem is named after the Greek astronomer and mathematician Claudius Ptolemaeus, who stated and used the result in about AD 150. Jalal and Krarup [222] prove Theorem 4.37 without the use of Ptolemy’s theorem, and are then able to obtain Ptolemy’s theorem as a simple corollary.
 
14
Note that in [124], condition (W3b), the subadditivity condition, was incorrectly interpreted as concavity of the cost function.
 
15
The formulation and solution of a hierarchical network design problem in which there are at least two grades of service dates back to a 1986 paper of Current et al. [126]. The first study of the grade of service Steiner tree problem, where the grades of service on the edges are determined by weights on the terminals, was a paper by Colbourn and Xue in 2000 [116], although this was for the Steiner tree problem in graphs. The main study of the geometric version of this problem is the paper of Xue et al. [416]. Note that our formulation of the Euclidean grade of service Steiner tree problem in the plane slightly simplifies that given in [416].
 
16
The former of these two methods of bounding the number of Steiner points is the most popular in the literature, and is employed in [160, 166, 355] and [28] amongst others. The second method is particularly relevant to applications surrounding the modelling of wireless sensor network deployment; see for example [412] and [413]. Both methods are also discussed in [57].
 
Literature
2.
go back to reference Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. Technical report, Department of Computer Science I, University of Bonn (2006) Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. Technical report, Department of Computer Science I, University of Bonn (2006)
5.
go back to reference Ajwani, G., Chu, C., Mak, W.-K.: FOARS: FLUTE based obstacle-avoiding rectilinear Steiner tree construction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(2), 194–204 (2011)CrossRef Ajwani, G., Chu, C., Mak, W.-K.: FOARS: FLUTE based obstacle-avoiding rectilinear Steiner tree construction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(2), 194–204 (2011)CrossRef
8.
go back to reference Alford, C., Brazil, M., Lee, D.H.: Optimisation in underground mining. In: Weintraub, A., Romero, C., Bjørndal, T., Epstein, R. (eds.) Handbook of Operations Research in Natural Resources, pp. 561–577. Springer, New York (2007) Alford, C., Brazil, M., Lee, D.H.: Optimisation in underground mining. In: Weintraub, A., Romero, C., Bjørndal, T., Epstein, R. (eds.) Handbook of Operations Research in Natural Resources, pp. 561–577. Springer, New York (2007)
17.
18.
go back to reference Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, chapter 5, pp. 201–290. North-Holland, Amsterdam (2000)CrossRef Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, chapter 5, pp. 201–290. North-Holland, Amsterdam (2000)CrossRef
21.
go back to reference Bae, S.W., Choi, S., Lee, C., Tanigawa, S.: Exact algorithms for the bottleneck Steiner tree problem. Algorithmica 61(4), 924–948 (2011)CrossRefMATHMathSciNet Bae, S.W., Choi, S., Lee, C., Tanigawa, S.: Exact algorithms for the bottleneck Steiner tree problem. Algorithmica 61(4), 924–948 (2011)CrossRefMATHMathSciNet
22.
go back to reference Bae, S.W., Lee, C., Choi, S.: On exact solutions to the Euclidean bottleneck Steiner tree problem. Inf. Process. Lett. 110(16), 672–678 (2010)CrossRefMATHMathSciNet Bae, S.W., Lee, C., Choi, S.: On exact solutions to the Euclidean bottleneck Steiner tree problem. Inf. Process. Lett. 110(16), 672–678 (2010)CrossRefMATHMathSciNet
23.
go back to reference Bainbridge, S., Eggeling, D., Page, G.: Lessons from the field – two years of deploying operational wireless sensor networks on the Great Barrier Reef. Sensors 11(7), 6842–6855 (2011)CrossRef Bainbridge, S., Eggeling, D., Page, G.: Lessons from the field – two years of deploying operational wireless sensor networks on the Great Barrier Reef. Sensors 11(7), 6842–6855 (2011)CrossRef
28.
go back to reference Berman, P., Zelikovsky, A.: On approximation of the power-p and bottleneck Steiner trees. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees. Combinatorial Optimization, vol. 6, pp. 117–135. Springer, New York (2000)CrossRef Berman, P., Zelikovsky, A.: On approximation of the power-p and bottleneck Steiner trees. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees. Combinatorial Optimization, vol. 6, pp. 117–135. Springer, New York (2000)CrossRef
32.
go back to reference Bienstock, D., Brickell, E.F., Monma, C.L.: On the structure of minimum-weight k-connected spanning networks. SIAM J. Discret. Math. 3(3), 320–329 (1990)CrossRefMATHMathSciNet Bienstock, D., Brickell, E.F., Monma, C.L.: On the structure of minimum-weight k-connected spanning networks. SIAM J. Discret. Math. 3(3), 320–329 (1990)CrossRefMATHMathSciNet
37.
go back to reference Borah, M., Owens, R.M., Irwin, M.J.: An edge-based heuristic for Steiner routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 13, 1563–1568 (1994)CrossRef Borah, M., Owens, R.M., Irwin, M.J.: An edge-based heuristic for Steiner routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 13, 1563–1568 (1994)CrossRef
48.
go back to reference Brazil, M., Grossman, P.A., Lee, D.H., Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Constrained path optimisation for underground mine layout. In: World Congress on Engineering 2007, London, pp. 856–861 (2007) Brazil, M., Grossman, P.A., Lee, D.H., Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Constrained path optimisation for underground mine layout. In: World Congress on Engineering 2007, London, pp. 856–861 (2007)
49.
go back to reference Brazil, M., Lee, D.H., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Network optimisation of underground mine design. Proc. Australas. Inst. Min. Metall. 305(1), 57–66 (2000) Brazil, M., Lee, D.H., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Network optimisation of underground mine design. Proc. Australas. Inst. Min. Metall. 305(1), 57–66 (2000)
50.
go back to reference Brazil, M., Lee, D.H., Van Leuven, M., Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Optimising declines in underground mines. Min. Technol. 112(3), 164–170 (2003)CrossRef Brazil, M., Lee, D.H., Van Leuven, M., Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Optimising declines in underground mines. Min. Technol. 112(3), 164–170 (2003)CrossRef
51.
go back to reference Brazil, M., Nielsen, B.K., Winter, P., Zachariasen, M.: Rotationally optimal spanning and Steiner trees in uniform orientation metrics. Comput. Geom. Theory Appl. 29, 251–263 (2004)CrossRefMATHMathSciNet Brazil, M., Nielsen, B.K., Winter, P., Zachariasen, M.: Rotationally optimal spanning and Steiner trees in uniform orientation metrics. Comput. Geom. Theory Appl. 29, 251–263 (2004)CrossRefMATHMathSciNet
52.
go back to reference Brazil, M., Ras, C.J., Swanepoel, K.J., Thomas, D.A.: Generalised k-Steiner tree problems in normed planes. Algorithmica 71(1), 66–86 (2015)CrossRefMATHMathSciNet Brazil, M., Ras, C.J., Swanepoel, K.J., Thomas, D.A.: Generalised k-Steiner tree problems in normed planes. Algorithmica 71(1), 66–86 (2015)CrossRefMATHMathSciNet
53.
go back to reference Brazil, M., Ras, C.J., Thomas, D.A.: Approximating minimum Steiner point trees in Minkowski planes. Networks 56(4), 244–254 (2010)CrossRefMATHMathSciNet Brazil, M., Ras, C.J., Thomas, D.A.: Approximating minimum Steiner point trees in Minkowski planes. Networks 56(4), 244–254 (2010)CrossRefMATHMathSciNet
54.
go back to reference Brazil, M., Ras, C.J., Thomas, D.A.: The bottleneck 2-connected k-Steiner network problem for k ≤ 2. Discret. Appl. Math. 160(7), 1028–1038 (2012)CrossRefMATHMathSciNet Brazil, M., Ras, C.J., Thomas, D.A.: The bottleneck 2-connected k-Steiner network problem for k ≤ 2. Discret. Appl. Math. 160(7), 1028–1038 (2012)CrossRefMATHMathSciNet
55.
go back to reference Brazil, M., Ras, C.J., Thomas, D.A.: Relay augmentation for lifetime extension of wireless sensor networks. IET Wirel. Sens. Syst. 3(2), 145–152 (2013)CrossRef Brazil, M., Ras, C.J., Thomas, D.A.: Relay augmentation for lifetime extension of wireless sensor networks. IET Wirel. Sens. Syst. 3(2), 145–152 (2013)CrossRef
56.
go back to reference Brazil, M., Ras, C.J., Thomas, D.A.: An exact algorithm for the bottleneck 2-connected k-Steiner network problem in L p planes. arXiv preprint arXiv:1111.2105 (2014) Brazil, M., Ras, C.J., Thomas, D.A.: An exact algorithm for the bottleneck 2-connected k-Steiner network problem in L p planes. arXiv preprint arXiv:1111.2105 (2014)
57.
go back to reference Brazil, M., Ras, C.J., Thomas, D.A.: A flow-dependent quadratic Steiner tree problem in the Euclidean plane. Networks 64(1), 18–28 (2014)CrossRefMathSciNet Brazil, M., Ras, C.J., Thomas, D.A.: A flow-dependent quadratic Steiner tree problem in the Euclidean plane. Networks 64(1), 18–28 (2014)CrossRefMathSciNet
60.
go back to reference Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Gradient-constrained minimum networks. I. Fundamentals. J. Global Optim. 21(2), 139–155 (2001)CrossRefMATHMathSciNet Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Gradient-constrained minimum networks. I. Fundamentals. J. Global Optim. 21(2), 139–155 (2001)CrossRefMATHMathSciNet
61.
go back to reference Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Gradient-constrained minimum networks. III. Fixed topology. J. Optim. Theory Appl. 155(1), 336–354 (2012)CrossRefMATHMathSciNet Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Gradient-constrained minimum networks. III. Fixed topology. J. Optim. Theory Appl. 155(1), 336–354 (2012)CrossRefMATHMathSciNet
63.
go back to reference Brazil, M., Thomas, D.A., Weng, J.F.: Gradient constrained minimal Steiner trees. In: Pardalas, P.M., Du, D.-Z. (eds.) Network Design: Connectivity and Facilities Location (DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 40). American Mathematical Society, Providence, Rhode Island (1998) Brazil, M., Thomas, D.A., Weng, J.F.: Gradient constrained minimal Steiner trees. In: Pardalas, P.M., Du, D.-Z. (eds.) Network Design: Connectivity and Facilities Location (DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 40). American Mathematical Society, Providence, Rhode Island (1998)
69.
go back to reference Brazil, M., Thomas, D.A., Weng, J.F.: Gradient-constrained minimum networks (II). Labelled or locally minimal Steiner points. J. Global Optim. 42(1), 23–37 (2008)MATHMathSciNet Brazil, M., Thomas, D.A., Weng, J.F.: Gradient-constrained minimum networks (II). Labelled or locally minimal Steiner points. J. Global Optim. 42(1), 23–37 (2008)MATHMathSciNet
71.
go back to reference Brazil, M., Volz, M.G.: Gradient-constrained minimum interconnection networks. In: Pardalos, P.M., Du, D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1459–1510. Springer, New York (2013)CrossRef Brazil, M., Volz, M.G.: Gradient-constrained minimum interconnection networks. In: Pardalos, P.M., Du, D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1459–1510. Springer, New York (2013)CrossRef
79.
go back to reference Cavendish, J.C.: Automatic triangulation of arbitrary planar domains for the finite element method. Int. J. Numer. Methods Eng. 8(4), 679–696 (1974)CrossRefMATH Cavendish, J.C.: Automatic triangulation of arbitrary planar domains for the finite element method. Int. J. Numer. Methods Eng. 8(4), 679–696 (1974)CrossRefMATH
84.
go back to reference Chen, D., Du, D.-Z., Hu, X.-D., Lin, G.-H., Wang, L., Xue, G.: Approximations for Steiner trees with minimum number of Steiner points. J. Global Optim. 18(1), 17–33 (2000)CrossRefMATHMathSciNet Chen, D., Du, D.-Z., Hu, X.-D., Lin, G.-H., Wang, L., Xue, G.: Approximations for Steiner trees with minimum number of Steiner points. J. Global Optim. 18(1), 17–33 (2000)CrossRefMATHMathSciNet
93.
go back to reference Cheng, X., Du, D.-Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. Wirel. Netw. 14(3), 347–355 (2008)CrossRef Cheng, X., Du, D.-Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. Wirel. Netw. 14(3), 347–355 (2008)CrossRef
94.
go back to reference Chew, L.P., Drysdale III, R.L.: Voronoi diagrams based on convex distance function. In: Proceedings of the First Annual ACM Symposium on Computational Geometry (SCG), New York, pp. 235–244 (1985) Chew, L.P., Drysdale III, R.L.: Voronoi diagrams based on convex distance function. In: Proceedings of the First Annual ACM Symposium on Computational Geometry (SCG), New York, pp. 235–244 (1985)
96.
go back to reference Chiang, C., Sarrafzadeh, M., Wong, C.K.: Global routing based on Steiner min-max trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9, 1318–1325 (1990)CrossRef Chiang, C., Sarrafzadeh, M., Wong, C.K.: Global routing based on Steiner min-max trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9, 1318–1325 (1990)CrossRef
114.
116.
go back to reference Colbourn, C.J., Xue, G.: Grade of service Steiner trees in series-parallel networks. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds) Advances in Steiner Trees, pp. 163–174. Kluwer Academic Publishers, Dordrecht (2000)CrossRef Colbourn, C.J., Xue, G.: Grade of service Steiner trees in series-parallel networks. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds) Advances in Steiner Trees, pp. 163–174. Kluwer Academic Publishers, Dordrecht (2000)CrossRef
117.
go back to reference Colthurst, T., Cox, C., Foisy, J., Howards, H., Kollett, K., Lowy, H., Root, S.: Networks minimizing length plus the number of Steiner points. In: Du, D.-Z., Pardalos, P.M. (eds.) Network Optimization Problems: Algorithms, Applications and Complexity, pp. 23–36. World Scientific, Singapore (1993)CrossRef Colthurst, T., Cox, C., Foisy, J., Howards, H., Kollett, K., Lowy, H., Root, S.: Networks minimizing length plus the number of Steiner points. In: Du, D.-Z., Pardalos, P.M. (eds.) Network Optimization Problems: Algorithms, Applications and Complexity, pp. 23–36. World Scientific, Singapore (1993)CrossRef
125.
go back to reference Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1969)MATH Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1969)MATH
126.
go back to reference Current, J.R., ReVelle, C.S., Cohon, J.L.: The hierarchical network design problem. Eur. J. Oper. Res. 27(1), 57–66 (1986)CrossRefMATH Current, J.R., ReVelle, C.S., Cohon, J.L.: The hierarchical network design problem. Eur. J. Oper. Res. 27(1), 57–66 (1986)CrossRefMATH
132.
go back to reference Drezner, Z., Wesolowsky, G.O.: A new method for the multifacility minimax location problem. J. Oper. Res. Soc. 29(11), 1095–1101 (1978)CrossRefMATHMathSciNet Drezner, Z., Wesolowsky, G.O.: A new method for the multifacility minimax location problem. J. Oper. Res. Soc. 29(11), 1095–1101 (1978)CrossRefMATHMathSciNet
134.
go back to reference Du, D.-Z., Hu, X.-D.: Steiner Tree Problems in Computer Communication Networks. World Scientific, Singapore (2008)CrossRefMATH Du, D.-Z., Hu, X.-D.: Steiner Tree Problems in Computer Communication Networks. World Scientific, Singapore (2008)CrossRefMATH
139.
go back to reference Du, D.-Z., Wang, L., Xu, B.: The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points. In: Wang, J. (ed.) Computing and Combinatorics, pp. 509–518. Springer, New York (2001)CrossRef Du, D.-Z., Wang, L., Xu, B.: The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points. In: Wang, J. (ed.) Computing and Combinatorics, pp. 509–518. Springer, New York (2001)CrossRef
149.
go back to reference Elzinga, J., Hearn, D., Randolph, W.D.: Minimax multifacility location with Euclidean distances. Transp. Sci. 10(4), 321–336 (1976)CrossRefMathSciNet Elzinga, J., Hearn, D., Randolph, W.D.: Minimax multifacility location with Euclidean distances. Transp. Sci. 10(4), 321–336 (1976)CrossRefMathSciNet
160.
go back to reference Ganley, J.L.: Geometric interconnection and placement algorithms. PhD thesis, The University of Virginia (1995) Ganley, J.L.: Geometric interconnection and placement algorithms. PhD thesis, The University of Virginia (1995)
163.
go back to reference Ganley, J.L., Cohoon, J.P.: Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles. In: IEEE Proceedings of the International Symposium on Circuits and Systems, London, pp. 113–116 (1994) Ganley, J.L., Cohoon, J.P.: Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles. In: IEEE Proceedings of the International Symposium on Circuits and Systems, London, pp. 113–116 (1994)
166.
go back to reference Ganley, J.L., Salowe, J.S.: The power-p Steiner tree problem. Nord. J. Comput. 5(2), 115–127 (1998)MATHMathSciNet Ganley, J.L., Salowe, J.S.: The power-p Steiner tree problem. Nord. J. Comput. 5(2), 115–127 (1998)MATHMathSciNet
177.
178.
go back to reference Gilbert, E.N.: Minimum cost communication networks. Bell Syst. Tech. J. 46, 2209–2227 (1967)CrossRef Gilbert, E.N.: Minimum cost communication networks. Bell Syst. Tech. J. 46, 2209–2227 (1967)CrossRef
186.
go back to reference Hamrin, H.: Underground mining methods and applications. In: Hustrilid, W.A., Bullock, R.L. (eds.) Underground Mining Methods. Society for Mining, Metallurgy, and Exploration, Littleton, Colorado (2001) Hamrin, H.: Underground mining methods and applications. In: Hustrilid, W.A., Bullock, R.L. (eds.) Underground Mining Methods. Society for Mining, Metallurgy, and Exploration, Littleton, Colorado (2001)
204.
go back to reference Huang, T., Li, L., Young, E.F.Y.: On the construction of optimal obstacle-avoiding rectilinear Steiner minimum trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(5), 718–731 (2011)CrossRef Huang, T., Li, L., Young, E.F.Y.: On the construction of optimal obstacle-avoiding rectilinear Steiner minimum trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(5), 718–731 (2011)CrossRef
205.
go back to reference Huang, T., Young, E.F.Y.: Obstacle-avoiding rectilinear Steiner minimum tree construction: an optimal approach. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 610–613 (2010) Huang, T., Young, E.F.Y.: Obstacle-avoiding rectilinear Steiner minimum tree construction: an optimal approach. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 610–613 (2010)
206.
go back to reference Huang, T., Young, E.F.Y.: An exact algorithm for the construction of rectilinear Steiner minimum trees among complex obstacles. In: Proceedings of the 48th ACM/IEEE Design Automation Conference (DAC), San Diego, pp. 164–169 (2011) Huang, T., Young, E.F.Y.: An exact algorithm for the construction of rectilinear Steiner minimum trees among complex obstacles. In: Proceedings of the 48th ACM/IEEE Design Automation Conference (DAC), San Diego, pp. 164–169 (2011)
208.
go back to reference Huang, T., Young, E.F.Y.: Obsteiner: an exact algorithm for the construction of rectilinear Steiner minimum trees in the presence of complex rectilinear obstacles. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(6), 882–893 (2013)CrossRef Huang, T., Young, E.F.Y.: Obsteiner: an exact algorithm for the construction of rectilinear Steiner minimum trees in the presence of complex rectilinear obstacles. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(6), 882–893 (2013)CrossRef
222.
225.
go back to reference Juhl, D.D.: Full Steiner trees for the obstacle-avoiding rectilinear Steiner tree problem. Master’s thesis, Department of Computer Science, University of Copenhagen (2013) Juhl, D.D.: Full Steiner trees for the obstacle-avoiding rectilinear Steiner tree problem. Master’s thesis, Department of Computer Science, University of Copenhagen (2013)
228.
go back to reference Kahng, A.B., Robins, G.: A new class of iterative Steiner tree heuristics with good performance. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(7), 893–902 (1992)CrossRef Kahng, A.B., Robins, G.: A new class of iterative Steiner tree heuristics with good performance. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(7), 893–902 (1992)CrossRef
230.
go back to reference Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, New York (2007) Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, New York (2007)
237.
go back to reference Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Algorithms and Combinatorics, 4th edn. Springer, Berlin (2008) Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Algorithms and Combinatorics, 4th edn. Springer, Berlin (2008)
240.
go back to reference Kupitz, Y.S., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. In: Barany, I., Boroczky, K. (eds.) Bolyai Society Mathematical Studies, 6: Intuitive Geometry, pp. 55–127. Janos Bolyai Mathematical Society, Budapest (1997) Kupitz, Y.S., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. In: Barany, I., Boroczky, K. (eds.) Bolyai Society Mathematical Studies, 6: Intuitive Geometry, pp. 55–127. Janos Bolyai Mathematical Society, Budapest (1997)
247.
go back to reference Lee, J.: A first course in combinatorial optimization. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2004)CrossRefMATH Lee, J.: A first course in combinatorial optimization. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2004)CrossRefMATH
250.
go back to reference Lerchs, H., Grossmann, I.F.: Optimum design of open-pit mines. Trans. Can. Inst. Min. Metall. Pet. 68, 17–24 (1965) Lerchs, H., Grossmann, I.F.: Optimum design of open-pit mines. Trans. Can. Inst. Min. Metall. Pet. 68, 17–24 (1965)
253.
go back to reference Li, C.-S., Tong, F.F.-K., Georgiou, C.J., Chen, M.: Gain equalization in metropolitan and wide area optical networks using optical amplifiers. In: Proceedings of the 13th IEEE Conference on Computer Communications: Networking for Global Communications (INFOCOM), Toronto, pp. 130–137 (1994) Li, C.-S., Tong, F.F.-K., Georgiou, C.J., Chen, M.: Gain equalization in metropolitan and wide area optical networks using optical amplifiers. In: Proceedings of the 13th IEEE Conference on Computer Communications: Networking for Global Communications (INFOCOM), Toronto, pp. 130–137 (1994)
254.
go back to reference Li, L., Young, E.F.: Obstacle-avoiding rectilinear Steiner tree construction. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 523–528 (2008) Li, L., Young, E.F.: Obstacle-avoiding rectilinear Steiner tree construction. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 523–528 (2008)
258.
go back to reference Lin, C.-W., Chen, S.-Y., Li, C.-F., Chang, Y.-W., Yang, C.-L.: Obstacle-avoiding rectilinear Steiner tree construction based on spanning graphs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(4), 643–653 (2008)CrossRef Lin, C.-W., Chen, S.-Y., Li, C.-F., Chang, Y.-W., Yang, C.-L.: Obstacle-avoiding rectilinear Steiner tree construction based on spanning graphs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(4), 643–653 (2008)CrossRef
260.
go back to reference Lin, G.-H., Xue, G.: Steiner tree problem with minimum number of Steiner points and bounded edge-length. Inf. Process. Lett. 69(2), 53–57 (1999)CrossRefMathSciNet Lin, G.-H., Xue, G.: Steiner tree problem with minimum number of Steiner points and bounded edge-length. Inf. Process. Lett. 69(2), 53–57 (1999)CrossRefMathSciNet
262.
go back to reference Liu, C.-H., Kuo, S.-Y., Lee, D.T., Lin, C.-S., Weng, J.-H., Yuan, S.-Y.: Obstacle-avoiding rectilinear Steiner tree construction: a Steiner-point-based algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(7), 1050–1060 (2012)CrossRef Liu, C.-H., Kuo, S.-Y., Lee, D.T., Lin, C.-S., Weng, J.-H., Yuan, S.-Y.: Obstacle-avoiding rectilinear Steiner tree construction: a Steiner-point-based algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(7), 1050–1060 (2012)CrossRef
267.
go back to reference Long, J., Zhou, H., Memik, S.O.: EBOARST: an efficient edge-based obstacle-avoiding rectilinear Steiner tree construction algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(12), 2169–2182 (2008)CrossRef Long, J., Zhou, H., Memik, S.O.: EBOARST: an efficient edge-based obstacle-avoiding rectilinear Steiner tree construction algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(12), 2169–2182 (2008)CrossRef
269.
go back to reference Lu, B., Gu, J., Hu, X., Shragowitz, E.: Wire segmenting for buffer insertion based on RSTP-MSP. Theor. Comput. Sci. 262(1), 257–267 (2001)CrossRefMATHMathSciNet Lu, B., Gu, J., Hu, X., Shragowitz, E.: Wire segmenting for buffer insertion based on RSTP-MSP. Theor. Comput. Sci. 262(1), 257–267 (2001)CrossRefMATHMathSciNet
272.
go back to reference Măndoiu, I.I., Zelikovsky, A.Z.: A note on the MST heuristic for bounded edge-length Steiner trees with minimum number of Steiner points. Inf. Process. Lett. 75(4), 165–167 (2000)CrossRefMATH Măndoiu, I.I., Zelikovsky, A.Z.: A note on the MST heuristic for bounded edge-length Steiner trees with minimum number of Steiner points. Inf. Process. Lett. 75(4), 165–167 (2000)CrossRefMATH
288.
go back to reference Müller-Hannemann, M., Schulze, A.: Hardness and approximation of octilinear Steiner trees. Int. J. Comput. Geom. Appl. 17, 231–260 (2007)CrossRefMATH Müller-Hannemann, M., Schulze, A.: Hardness and approximation of octilinear Steiner trees. Int. J. Comput. Geom. Appl. 17, 231–260 (2007)CrossRefMATH
292.
go back to reference Newman, A.M., Rubio, E., Caro, R., Weintraub, A., Eurek, K.: A review of operations research in mine planning. Interfaces 40(3), 222–245 (2010)CrossRef Newman, A.M., Rubio, E., Caro, R., Weintraub, A., Eurek, K.: A review of operations research in mine planning. Interfaces 40(3), 222–245 (2010)CrossRef
295.
go back to reference Nielsen, B.K., Winter, P., Zachariasen, M.: Rectilinear trees under rotation and related problems. In: Proceedings of the 18th European Workshop on Computational Geometry, Warsaw, pp. 18–22 (2002) Nielsen, B.K., Winter, P., Zachariasen, M.: Rectilinear trees under rotation and related problems. In: Proceedings of the 18th European Workshop on Computational Geometry, Warsaw, pp. 18–22 (2002)
296.
go back to reference Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, New York (1995) Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, New York (1995)
297.
go back to reference Oppermann, F.J., Boano, C.A., Römer, K.: A decade of wireless sensing applications: survey and taxonomy. In: Ammari, H.M. (ed.) The Art of Wireless Sensor Networks, pp. 11–50. Springer, Heidelberg (2014)CrossRef Oppermann, F.J., Boano, C.A., Römer, K.: A decade of wireless sensing applications: survey and taxonomy. In: Ammari, H.M. (ed.) The Art of Wireless Sensor Networks, pp. 11–50. Springer, Heidelberg (2014)CrossRef
317.
319.
go back to reference Ramamurthy, B., Iness, J., Mukherjee, B.: Minimizing the number of optical amplifiers needed to support a multi-wavelength optical LAN/MAN. In: Proceedings of INFOCOM’97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Driving the Information Revolution, Kobe, vol. 1, pp. 261–268 (1997) Ramamurthy, B., Iness, J., Mukherjee, B.: Minimizing the number of optical amplifiers needed to support a multi-wavelength optical LAN/MAN. In: Proceedings of INFOCOM’97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Driving the Information Revolution, Kobe, vol. 1, pp. 261–268 (1997)
328.
go back to reference Rubinstein, J.H., Thomas, D.A., Weng, J.F.: Degree-five Steiner points cannot reduce network costs for planar sets. Networks 22(6), 531–537 (1992)CrossRefMATHMathSciNet Rubinstein, J.H., Thomas, D.A., Weng, J.F.: Degree-five Steiner points cannot reduce network costs for planar sets. Networks 22(6), 531–537 (1992)CrossRefMATHMathSciNet
337.
344.
go back to reference Shang, S., Hu, X., Jing, T.: Rotational Steiner ratio problem under uniform orientation metrics. In: Discrete Geometry, Combinatorics and Graph Theory. Lecture Notes in Computer Science, vol. 4381, pp. 166–176. Springer, Berlin/Heidelberg (2007) Shang, S., Hu, X., Jing, T.: Rotational Steiner ratio problem under uniform orientation metrics. In: Discrete Geometry, Combinatorics and Graph Theory. Lecture Notes in Computer Science, vol. 4381, pp. 166–176. Springer, Berlin/Heidelberg (2007)
350.
go back to reference Smith, J.M., Liebman, J.S.: Steiner trees, Steiner circuits and the interference problem in building design. Eng. Optim. 4, 15–36 (1979) Smith, J.M., Liebman, J.S.: Steiner trees, Steiner circuits and the interference problem in building design. Eng. Optim. 4, 15–36 (1979)
363.
go back to reference Thomas, D.A., Brazil, M., Lee, D.H., Wormald, N.C.: Network modelling of underground mine layout: two case studies. Int. Trans. Oper. Res. 14(2), 143–158 (2007)CrossRefMATH Thomas, D.A., Brazil, M., Lee, D.H., Wormald, N.C.: Network modelling of underground mine layout: two case studies. Int. Trans. Oper. Res. 14(2), 143–158 (2007)CrossRefMATH
376.
go back to reference Volz, M.G.: Gradient-constrained flow-dependent networks for underground mine design. PhD thesis, The University of Melbourne (2008) Volz, M.G.: Gradient-constrained flow-dependent networks for underground mine design. PhD thesis, The University of Melbourne (2008)
377.
go back to reference Volz, M.G., Brazil, M., Ras, C.J., Swanepoel, K.J., Thomas, D.A.: The Gilbert arborescence problem. Networks 61(3), 238–247 (2013)CrossRefMATHMathSciNet Volz, M.G., Brazil, M., Ras, C.J., Swanepoel, K.J., Thomas, D.A.: The Gilbert arborescence problem. Networks 61(3), 238–247 (2013)CrossRefMATHMathSciNet
383.
go back to reference Wang, F., Wang, D., Liu, J.: Traffic-aware relay node deployment for data collection in wireless sensor networks. In: 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON’09), Rome, pp. 1–9 (2009) Wang, F., Wang, D., Liu, J.: Traffic-aware relay node deployment for data collection in wireless sensor networks. In: 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON’09), Rome, pp. 1–9 (2009)
390.
go back to reference Weber, A.: Über den Standort der Industrien. Teil I: Reine Theorie des Standorts. Verlag J. C. B. Mohr (1909). Translated by C. J. Friedrich as Alfred Weber’s Theory of the Location of Industries. Chicago University Press, Chicago, 1929 Weber, A.: Über den Standort der Industrien. Teil I: Reine Theorie des Standorts. Verlag J. C. B. Mohr (1909). Translated by C. J. Friedrich as Alfred Weber’s Theory of the Location of Industries. Chicago University Press, Chicago, 1929
391.
393.
go back to reference Weng, J.F.: Minimum networks for separating and surrounding objects. In: Cheng, X., Du, D.-Z. (eds.) Steiner Trees in Industry. Combinatorial Optimization, vol. 11, pp. 427–439. Springer, New York (2001)CrossRef Weng, J.F.: Minimum networks for separating and surrounding objects. In: Cheng, X., Du, D.-Z. (eds.) Steiner Trees in Industry. Combinatorial Optimization, vol. 11, pp. 427–439. Springer, New York (2001)CrossRef
394.
go back to reference Weng, J.F.: Generalized Melzak’s construction in the Steiner tree problem. Int. J. Comput. Geom. Appl. 12(6), 481–488 (2002)CrossRefMATH Weng, J.F.: Generalized Melzak’s construction in the Steiner tree problem. Int. J. Comput. Geom. Appl. 12(6), 481–488 (2002)CrossRefMATH
396.
go back to reference Wesolowsky, G.O.: The Weber problem: history and perspectives. Locat. Sci. 1, 5–23 (1993)MATH Wesolowsky, G.O.: The Weber problem: history and perspectives. Locat. Sci. 1, 5–23 (1993)MATH
403.
go back to reference Winter, P.: Euclidean Steiner minimal trees with obstacles and Steiner visibility graphs. Discret. Appl. Math. 47, 187–206 (1993)CrossRefMATH Winter, P.: Euclidean Steiner minimal trees with obstacles and Steiner visibility graphs. Discret. Appl. Math. 47, 187–206 (1993)CrossRefMATH
406.
go back to reference Winter, P., Smith, J.M.: Steiner minimal trees for three points with one convex polygonal obstacle. Ann. Oper. Res. 33, 577–599 (1991)CrossRefMATHMathSciNet Winter, P., Smith, J.M.: Steiner minimal trees for three points with one convex polygonal obstacle. Ann. Oper. Res. 33, 577–599 (1991)CrossRefMATHMathSciNet
412.
go back to reference Xin, Y., Guven, T., Shayman, M.: Relay deployment and power control for lifetime elongation in sensor networks. In: IEEE International Conference on Communications, Istanbul, vol. 8, pp. 3461–3466 (2006) Xin, Y., Guven, T., Shayman, M.: Relay deployment and power control for lifetime elongation in sensor networks. In: IEEE International Conference on Communications, Istanbul, vol. 8, pp. 3461–3466 (2006)
413.
go back to reference Xu, K., Hassanein, H., Takahara, G., Wang, Q.: Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Trans. Mob. Comput. 9(2), 145–159 (2010)CrossRef Xu, K., Hassanein, H., Takahara, G., Wang, Q.: Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Trans. Mob. Comput. 9(2), 145–159 (2010)CrossRef
414.
go back to reference Xue, G.: A branch-and-bound algorithm for computing node weighted Steiner minimum trees. In: Jiang, T., Lee, D.T. (eds.) Computing and Combinatorics. Lecture Notes in Computer Science, vol. 1276, pp. 383–392. Springer, Berlin/Heidelberg (1997) Xue, G.: A branch-and-bound algorithm for computing node weighted Steiner minimum trees. In: Jiang, T., Lee, D.T. (eds.) Computing and Combinatorics. Lecture Notes in Computer Science, vol. 1276, pp. 383–392. Springer, Berlin/Heidelberg (1997)
416.
go back to reference Xue, G., Lin, G.-H., Du, D.-Z.: Grade of service Steiner minimum trees in the Euclidean plane. Algorithmica 31, 479–500 (2004)CrossRefMathSciNet Xue, G., Lin, G.-H., Du, D.-Z.: Grade of service Steiner minimum trees in the Euclidean plane. Algorithmica 31, 479–500 (2004)CrossRefMathSciNet
433.
go back to reference Zachariasen, M., Winter, P.: Obstacle-avoiding Euclidean Steiner trees in the plane: an exact algorithm. In: Workshop on Algorithm Engineering and Experimentation (ALENEX), Baltimore. Lecture Notes in Computer Science 1619, pp. 282–295. Springer, Berlin/Heidelberg (1999) Zachariasen, M., Winter, P.: Obstacle-avoiding Euclidean Steiner trees in the plane: an exact algorithm. In: Workshop on Algorithm Engineering and Experimentation (ALENEX), Baltimore. Lecture Notes in Computer Science 1619, pp. 282–295. Springer, Berlin/Heidelberg (1999)
Metadata
Title
Steiner Trees with Other Cost Functions and Constraints
Authors
Marcus Brazil
Martin Zachariasen
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-13915-9_4

Premium Partner