Skip to main content
Top

2015 | OriginalPaper | Chapter

3. Rectilinear Steiner Trees

Authors : Marcus Brazil, Martin Zachariasen

Published in: Optimal Interconnection Trees in the Plane

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rectilinear Steiner tree problem, which is the most important form of the Steiner tree problem in terms of current applications (mostly involving the design of microchips), is the subject of this chapter. We have attempted to make the chapter reasonably self-contained, although a familiarity with some of the concepts in the earlier chapters, such as direction sets and canonical forms, is assumed. Here the fundamental properties are described in the first section, followed by global properties, two different algorithmic approaches and a discussion of special sets of points for which polynomial-time algorithms exist.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The more general definition of a cross, for any norm, is given in Sect. 1.​6.​2 Clearly, the definition in this chapter is consistent with the more general definition.
 
2
The Hwang form is named after Frank K. Hwang, who gave the characterisation in his seminal paper from 1976 [209]. A simpler proof of the Hwang form was given by Richards and Salowe [322] (see also Zachariasen [429]). In this book we give a proof that is based on the theory of canonical forms developed for general fixed orientation metrics in Chap. 2.
 
3
One of the first probabilistic bounds on the number of full components was given by Salowe and Warme [332] in 1995. They showed that for a set of randomly and uniformly distributed terminals, the expected number of full components spanning k terminals, where k is a constant, is O(n 2). Also, for \(k = \Omega (n)\) they proved that the expected number of full components spanning k terminals is O(1). Zachariasen [427] showed that the expected number of full components spanning k terminals, and satisfying the rectangle property and a simplified bottleneck Steiner distance property, is O(n(loglogn) k−2). Finally, Fößmeier and Kaufmann [155] showed that the expected number of full components satisfying the tree star property is \(O(n \cdot 2^{\sqrt{n\log n}})\) with high probability.
 
4
The first computer code to compute minimum rectilinear Steiner trees appears to have been developed by Yang and Wing [421] in 1971. The algorithm used a reduction to the Hanan grid, and solved the graph problem using a branch-and-bound algorithm for graphs. The largest solved problem had 9 terminals, and it was solved on a reduced Hanan grid with 20 vertices and 31 edges – pruned using a path-convex hull approach. In a follow-up paper from 1972, Yang and Wing [422] mentioned that by using the Dreyfus and Wagner dynamic programming algorithm [131], it should be possible to solve problems with 14 terminals in a couple of minutes, but problems with 18 terminals would require more than a day of computing time. In 1989, Sirodenko [348] presented an approach that allowed problems with up to 11 terminals to be solved. In the early 1990s, a number of papers appeared. Ganley and Cohoon [161] presented a dynamic programming algorithm that made it possible to solve problems with up to 16 terminals; an improved FST-based dynamic programming algorithm increased the range to 18 terminals [162]. Using a considerable engineering effort, Thomborson et al. [366] managed to solve problem instances with up to 23 terminals. Shortly after, Salowe and Warme [332] suggested a GeoSteiner approach, allowing the solution of problem instances with more than 30 terminals; Hetzel [195] pushed the range to 50 terminals. The real breakthrough occurred a few years later when Warme [386] in 1998 computed minimum rectilinear Steiner trees for problem instances with more than 1,000 terminals.
 
5
In the original papers on the FLUTE algorithm a minimal wire length vector is called a potentially optimal wire length (POWL) vector. We find that the prefix ‘minimal’ better characterises the properties of these vectors, namely that they are the ones that are locally minimal under domination.
 
6
In addition to the references to the primary sources given in this section, more details on some of the results discussed here can also be found in Part III, Chapter 3 of Hwang et al. [211] and in the survey article of Thomas and Weng [364].
 
7
A classical paper on the physical layout of circuits, including the design of printed circuit boards, is that of Soukup [356]. A more recent overview of mathematical methods for the physical layout of printed circuit boards can be found in [1].
 
8
The literature on the physical design of integrated circuits is vast. Some fairly recent books and theses include – in chronological order – Lengauer [249], Kahng and Robins [229], Pecht and Wong [301], Sarrafzadeh and Wong [339], Gerez [173], Sait and Youssef [331], Sherwani [347], Vygen [378], Saxena et al. [340] and Kahng et al. [226]. Some early contributions on the routing problem are Yang and Wing [423] and Hightower [196]; more recent surveys can be found in Möhring et al. [284], Cong et al. [118], Peyer [303], Moffitt et al. [283], Moffitt [282], Müller [286], Robins and Zelikovsky [325], Alpert et al. [10] and Gester et al. [175]. The list of combinatorial problems in chip design recently compiled by Korte and Vygen [238] illustrates the challenges in the field. The authors consider the chip design problem to be one of the most important application areas in (discrete) mathematics. In particular, efficient algorithms are needed to handle problems with millions of modules and nets.
 
Literature
1.
go back to reference Abboud, N., Grötschel, M., Koch, T.: Mathematical methods for physical layout of printed circuit boards: an overview. OR Spectr. 30(3), 453–468 (2008)CrossRefMATH Abboud, N., Grötschel, M., Koch, T.: Mathematical methods for physical layout of printed circuit boards: an overview. OR Spectr. 30(3), 453–468 (2008)CrossRefMATH
4.
9.
go back to reference Alpert, C.J., Hu, T.C., Huang, J.H., Kahng, A.B.: A direct combination of the Prim and Dijkstra constructions for improved performance-driven global routing. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Chicago, pp. 1868–1872 (1993) Alpert, C.J., Hu, T.C., Huang, J.H., Kahng, A.B.: A direct combination of the Prim and Dijkstra constructions for improved performance-driven global routing. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Chicago, pp. 1868–1872 (1993)
10.
go back to reference Alpert, C.J., Li, Z., Moffitt, M.D., Nam, G.-J., Roy, J.A., Tellez, G.: What makes a design difficult to route. In: Proceedings of the 19th ACM International Symposium on Physical Design (ISPD), New York, pp. 7–12 (2010) Alpert, C.J., Li, Z., Moffitt, M.D., Nam, G.-J., Roy, J.A., Tellez, G.: What makes a design difficult to route. In: Proceedings of the 19th ACM International Symposium on Physical Design (ISPD), New York, pp. 7–12 (2010)
11.
go back to reference Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (ed.): Handbook of Algorithms for Physical Design Automation. CRC, London (2009)MATH Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (ed.): Handbook of Algorithms for Physical Design Automation. CRC, London (2009)MATH
13.
go back to reference Althaus, E., Kupilas, J., Naujoks, R.: On the low-dimensional Steiner minimum tree problem in Hamming metric. Theor. Comput. Sci. 505, 2–10 (2013)CrossRefMATHMathSciNet Althaus, E., Kupilas, J., Naujoks, R.: On the low-dimensional Steiner minimum tree problem in Hamming metric. Theor. Comput. Sci. 505, 2–10 (2013)CrossRefMATHMathSciNet
14.
go back to reference Althaus, E., Naujoks, R.: Computing Steiner minimum trees in Hamming metric. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), Miami, pp. 172–181 (2006) Althaus, E., Naujoks, R.: Computing Steiner minimum trees in Hamming metric. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), Miami, pp. 172–181 (2006)
19.
20.
go back to reference Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication protocols. In: Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing (PODC), New York, pp. 177–187 (1990) Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication protocols. In: Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing (PODC), New York, pp. 177–187 (1990)
24.
go back to reference Bartoschek, C., Held, S., Maßberg, J., Rautenbach, D., Vygen, J.: The repeater tree construction problem. Inf. Process. Lett. 110(24), 1079–1083 (2010)CrossRef Bartoschek, C., Held, S., Maßberg, J., Rautenbach, D., Vygen, J.: The repeater tree construction problem. Inf. Process. Lett. 110(24), 1079–1083 (2010)CrossRef
30.
go back to reference Bern, M., Bienstock, D.: Polynomially solvable special cases of the Steiner problem in planar networks. Ann. Oper. Res. 33(6), 403–418 (1991)CrossRefMathSciNet Bern, M., Bienstock, D.: Polynomially solvable special cases of the Steiner problem in planar networks. Ann. Oper. Res. 33(6), 403–418 (1991)CrossRefMathSciNet
33.
go back to reference Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Rectilinear Steiner trees with minimum Elmore delay. In: Proceedings of the ACM Design Automation Conference (DAC), San Francisco, pp. 381–386 (1994) Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Rectilinear Steiner trees with minimum Elmore delay. In: Proceedings of the ACM Design Automation Conference (DAC), San Francisco, pp. 381–386 (1994)
35.
go back to reference Boese, K.D., Kahng, A.B., Robins, G.: High-performance routing trees with identified critical sinks. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 182–187 (1993) Boese, K.D., Kahng, A.B., Robins, G.: High-performance routing trees with identified critical sinks. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 182–187 (1993)
40.
go back to reference Boyd, S.P., Kim, S.-J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005)CrossRefMATHMathSciNet Boyd, S.P., Kim, S.-J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005)CrossRefMATHMathSciNet
41.
go back to reference Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in Steiner trees. In: Proceedings of the ACM Design Automation Conference (DAC), Las Vegas, pp. 195–198 (2001) Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in Steiner trees. In: Proceedings of the ACM Design Automation Conference (DAC), Las Vegas, pp. 195–198 (2001)
42.
go back to reference Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in rectilinear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(5), 605–615 (2003)CrossRef Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in rectilinear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(5), 605–615 (2003)CrossRef
64.
go back to reference Brazil, M., Thomas, D.A., Weng, J.F.: A polynomial time algorithm for rectilinear Steiner trees with terminals constrained to curves. Networks 33(2), 145–155 (1999)CrossRefMATHMathSciNet Brazil, M., Thomas, D.A., Weng, J.F.: A polynomial time algorithm for rectilinear Steiner trees with terminals constrained to curves. Networks 33(2), 145–155 (1999)CrossRefMATHMathSciNet
67.
go back to reference Brazil, M., Thomas, D.A., Weng, J.F.: Rectilinear Steiner minimal trees on parallel lines. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 27–37. Kluwer Academic, Boston (2000)CrossRef Brazil, M., Thomas, D.A., Weng, J.F.: Rectilinear Steiner minimal trees on parallel lines. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 27–37. Kluwer Academic, Boston (2000)CrossRef
89.
go back to reference Cheng, S.-W.: The Steiner tree problem for terminals on the boundary of a rectilinear polygon. Theor. Comput. Sci. 237(1–2), 213–238 (2000)CrossRefMATH Cheng, S.-W.: The Steiner tree problem for terminals on the boundary of a rectilinear polygon. Theor. Comput. Sci. 237(1–2), 213–238 (2000)CrossRefMATH
90.
go back to reference Cheng, S.-W., Lim, A., Wu, C.-T.: Optimal rectilinear Steiner tree for extremal point sets. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) Algorithms and Computation. Lecture Notes in Computer Science, vol. 762, pp. 523–532. Springer, Berlin/Heidelberg (1993) Cheng, S.-W., Lim, A., Wu, C.-T.: Optimal rectilinear Steiner tree for extremal point sets. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) Algorithms and Computation. Lecture Notes in Computer Science, vol. 762, pp. 523–532. Springer, Berlin/Heidelberg (1993)
91.
go back to reference Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for extremal point sets. Technical report HKUST-CS95-20, Department of Computer Science, HKUST (1995) Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for extremal point sets. Technical report HKUST-CS95-20, Department of Computer Science, HKUST (1995)
92.
go back to reference Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for extremal point sets (Extended Abstact). In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) Algorithms and Computations. Lecture Notes in Computer Science, vol. 1004, pp. 322–331. Springer, Berlin/Heidelberg (1995) Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for extremal point sets (Extended Abstact). In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) Algorithms and Computations. Lecture Notes in Computer Science, vol. 1004, pp. 322–331. Springer, Berlin/Heidelberg (1995)
101.
go back to reference Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29, i189–i198 (2013)CrossRef Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29, i189–i198 (2013)CrossRef
102.
go back to reference Chu, C.: FLUTE: Fast lookup table based wirelength estimation technique. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 696–701 (2004) Chu, C.: FLUTE: Fast lookup table based wirelength estimation technique. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 696–701 (2004)
103.
go back to reference Chu, C., Wong, Y.-C.: FLUTE: fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(1), 70–83 (2008)CrossRef Chu, C., Wong, Y.-C.: FLUTE: fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(1), 70–83 (2008)CrossRef
118.
go back to reference Cong, J., He, L., Koh, C.-K., Madden, P.H.: Performance optimization of VLSI interconnect layout. Integr. VLSI J. 21, 1–94 (1996)CrossRefMATH Cong, J., He, L., Koh, C.-K., Madden, P.H.: Performance optimization of VLSI interconnect layout. Integr. VLSI J. 21, 1–94 (1996)CrossRefMATH
119.
go back to reference Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Provably good performance-driven global routing. Comput. Aided Des. 11(6), 739–752 (1992) Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Provably good performance-driven global routing. Comput. Aided Des. 11(6), 739–752 (1992)
120.
go back to reference Cong, J., Leung, K.S., Zhou, D.: Performance-driven interconnect design based on distributed RC delay model. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 606–611 (1993) Cong, J., Leung, K.S., Zhou, D.: Performance-driven interconnect design based on distributed RC delay model. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 606–611 (1993)
148.
go back to reference Elmore, W.C.: The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19, 55–63 (1948)CrossRef Elmore, W.C.: The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19, 55–63 (1948)CrossRef
151.
go back to reference Farris, J.S.: Methods for computing Wagner trees. Syst. Zool. 19(1), 83–92 (1970)CrossRef Farris, J.S.: Methods for computing Wagner trees. Syst. Zool. 19(1), 83–92 (1970)CrossRef
155.
go back to reference Fößmeier, U., Kaufmann, M.: On exact solutions for the rectilinear Steiner tree problem. Part I: theoretical results. Algorithmica 26, 68–99 (2000)MATH Fößmeier, U., Kaufmann, M.: On exact solutions for the rectilinear Steiner tree problem. Part I: theoretical results. Algorithmica 26, 68–99 (2000)MATH
157.
go back to reference Frommer, I., Golden, B., Pundoor, G.: Heuristic methods for solving Euclidean non-uniform Steiner tree problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces, vol. 29, pp. 133–148. Springer, New York (2005)CrossRef Frommer, I., Golden, B., Pundoor, G.: Heuristic methods for solving Euclidean non-uniform Steiner tree problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces, vol. 29, pp. 133–148. Springer, New York (2005)CrossRef
159.
go back to reference Fuchs, B., Kern, W., Wang, X.: The number of tree stars is O ∗(1. 357 k ). Electron. Notes Discret. Math. 25, 183–185 (2006) Fuchs, B., Kern, W., Wang, X.: The number of tree stars is O (1. 357 k ). Electron. Notes Discret. Math. 25, 183–185 (2006)
161.
go back to reference Ganley, J.L., Cohoon, J.P.: A faster dynamic programming algorithm for exact rectilinear Steiner minimal trees. In: Proceedings of the Fourth Great Lakes Symposium on VLSI, South Bend, pp. 238–241 (1994) Ganley, J.L., Cohoon, J.P.: A faster dynamic programming algorithm for exact rectilinear Steiner minimal trees. In: Proceedings of the Fourth Great Lakes Symposium on VLSI, South Bend, pp. 238–241 (1994)
162.
go back to reference Ganley, J.L., Cohoon, J.P.: Optimal rectilinear Steiner minimal trees in o(n 22. 62 n ) time. In: Proceedings of the Sixth Canadian Conference on Computational Geometry, Saskatoon, pp. 308–313 (1994) Ganley, J.L., Cohoon, J.P.: Optimal rectilinear Steiner minimal trees in o(n 22. 62 n ) time. In: Proceedings of the Sixth Canadian Conference on Computational Geometry, Saskatoon, pp. 308–313 (1994)
163.
go back to reference Ganley, J.L., Cohoon, J.P.: Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles. In: IEEE Proceedings of the International Symposium on Circuits and Systems, London, pp. 113–116 (1994) Ganley, J.L., Cohoon, J.P.: Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles. In: IEEE Proceedings of the International Symposium on Circuits and Systems, London, pp. 113–116 (1994)
169.
173.
go back to reference Gerez, S.H.: Algorithms for VLSI Design Automation. Wiley, New York (1999) Gerez, S.H.: Algorithms for VLSI Design Automation. Wiley, New York (1999)
175.
go back to reference Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: Algorithms and data structures for fast and good VLSI routing. In: ACM Proceedings of the 49th Annual Design Automation Conference (DAC), New York, pp. 459–464 (2012) Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: Algorithms and data structures for fast and good VLSI routing. In: ACM Proceedings of the 49th Annual Design Automation Conference (DAC), New York, pp. 459–464 (2012)
192.
go back to reference Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design. In: Chvatal, V. (ed.) Combinatorial Optimization: Methods and Applications, pp. 33–96. IOS, Amsterdam (2011) Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design. In: Chvatal, V. (ed.) Combinatorial Optimization: Methods and Applications, pp. 33–96. IOS, Amsterdam (2011)
193.
go back to reference Held, S., Rotter, D.: Shallow-light Steiner arborescences with vertex delays. In: Goemans, M., Correa, J. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 7801, pp. 229–241. Springer, Berlin/Heidelberg (2013)CrossRef Held, S., Rotter, D.: Shallow-light Steiner arborescences with vertex delays. In: Goemans, M., Correa, J. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 7801, pp. 229–241. Springer, Berlin/Heidelberg (2013)CrossRef
194.
go back to reference Held, S., Spirkl, S.T.: A fast algorithm for rectilinear Steiner trees with length restrictions on obstacles. In: Proceedings of the 2014 ACM International Symposium on Physical Design (ISPD), Petaluma, pp. 37–44 (2014) Held, S., Spirkl, S.T.: A fast algorithm for rectilinear Steiner trees with length restrictions on obstacles. In: Proceedings of the 2014 ACM International Symposium on Physical Design (ISPD), Petaluma, pp. 37–44 (2014)
195.
go back to reference Hetzel, A.: Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles Lösungsverfahren. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (1995) Hetzel, A.: Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles Lösungsverfahren. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (1995)
196.
go back to reference Hightower, D.: The interconnection problem: a tutorial. Computer 7, 18–32 (1974)CrossRef Hightower, D.: The interconnection problem: a tutorial. Computer 7, 18–32 (1974)CrossRef
197.
go back to reference Ho, J.-M., Vijayan, G., Wong, C.K.: New algorithms for the rectilinear Steiner tree problem. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9(2), 185–193 (1990)CrossRef Ho, J.-M., Vijayan, G., Wong, C.K.: New algorithms for the rectilinear Steiner tree problem. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9(2), 185–193 (1990)CrossRef
202.
go back to reference Hou, H., Hu, J., Sapatnekar, S.S.: Non-Hanan routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18(4), 436–444 (1999)CrossRef Hou, H., Hu, J., Sapatnekar, S.S.: Non-Hanan routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18(4), 436–444 (1999)CrossRef
207.
go back to reference Huang, T., Young, E.F.Y.: Construction of rectilinear Steiner minimum trees with slew constraints over obstacles. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), New York, pp. 144–151 (2012) Huang, T., Young, E.F.Y.: Construction of rectilinear Steiner minimum trees with slew constraints over obstacles. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), New York, pp. 144–151 (2012)
211.
go back to reference Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics, vol. 53. Elsevier, Amsterdam (1992) Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics, vol. 53. Elsevier, Amsterdam (1992)
215.
224.
226.
go back to reference Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph Partitioning to Timing Closure. Springer, Dordrecht (2011)CrossRef Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph Partitioning to Timing Closure. Springer, Dordrecht (2011)CrossRef
229.
go back to reference Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic, Boston (1995)CrossRefMATH Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic, Boston (1995)CrossRefMATH
232.
go back to reference Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica 14, 305–321 (1995)CrossRefMATHMathSciNet Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica 14, 305–321 (1995)CrossRefMATHMathSciNet
238.
go back to reference Korte, B., Vygen, J.: Combinatorial problems in chip design. In: Grötschel, M., Katona, G.O.H. (eds.) Building Bridges Between Mathematics and Computer Science, pp. 333–368. Springer, Berlin (2008) Korte, B., Vygen, J.: Combinatorial problems in chip design. In: Grötschel, M., Katona, G.O.H. (eds.) Building Bridges Between Mathematics and Computer Science, pp. 333–368. Springer, Berlin (2008)
243.
go back to reference Lee, D.T., Chen, T.H., Yang, C.D.: Shortest rectilinear paths among weighted obstacles. In: Proceedings of the Sixth Annual ACM Symposium on Computational Geometry (SCG), New York, pp. 301–310 (1990) Lee, D.T., Chen, T.H., Yang, C.D.: Shortest rectilinear paths among weighted obstacles. In: Proceedings of the Sixth Annual ACM Symposium on Computational Geometry (SCG), New York, pp. 301–310 (1990)
246.
go back to reference Lee, D.T., Yang, C.D., Chen, T.H.: Shortest rectilinear paths among weighted obstacles. Int. J. Comput. Geom. Appl. 1, 109–124 (1991)CrossRefMATHMathSciNet Lee, D.T., Yang, C.D., Chen, T.H.: Shortest rectilinear paths among weighted obstacles. Int. J. Comput. Geom. Appl. 1, 109–124 (1991)CrossRefMATHMathSciNet
249.
go back to reference Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)MATH Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)MATH
271.
go back to reference Măndoiu, I.I., Vazirani, V.V., Ganley, J.L.: A new heuristic for rectilinear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19, 1129–1139 (2000)CrossRef Măndoiu, I.I., Vazirani, V.V., Ganley, J.L.: A new heuristic for rectilinear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19, 1129–1139 (2000)CrossRef
275.
go back to reference Maßberg, J., Nieberg, T.: Rectilinear paths with minimum segment lengths. Discret. Appl. Math. 161(12), 1769–1775 (2013)CrossRefMATH Maßberg, J., Nieberg, T.: Rectilinear paths with minimum segment lengths. Discret. Appl. Math. 161(12), 1769–1775 (2013)CrossRefMATH
278.
go back to reference Melzak, Z.A.: Companion to Concrete Mathematics, vol. II. Wiley, New York (1976) Melzak, Z.A.: Companion to Concrete Mathematics, vol. II. Wiley, New York (1976)
281.
go back to reference Miller, Z., Pritkin, D.: Applying a result of Frankl and Rödl to the construction of Steiner trees in the hypercube. Discret. Math. 131, 183–194 (1994)CrossRefMATH Miller, Z., Pritkin, D.: Applying a result of Frankl and Rödl to the construction of Steiner trees in the hypercube. Discret. Math. 131, 183–194 (1994)CrossRefMATH
282.
go back to reference Moffitt, M.D.: Global routing revisited. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), New York, pp. 805–808 (2009) Moffitt, M.D.: Global routing revisited. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), New York, pp. 805–808 (2009)
283.
go back to reference Moffitt, M.D., Roy, J.A., Markov, I.L.: The coming of age of (academic) global routing. In: Proceedings of the 2008 ACM International Symposium on Physical Design (ISPD), New York, pp. 148–155 (2008) Moffitt, M.D., Roy, J.A., Markov, I.L.: The coming of age of (academic) global routing. In: Proceedings of the 2008 ACM International Symposium on Physical Design (ISPD), New York, pp. 148–155 (2008)
284.
go back to reference Möhring, R., Wagner, D., Wagner, F.: VLSI network design. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and Management Science, vol. 7. Elsevier, Amsterdam (1995) Möhring, R., Wagner, D., Wagner, F.: VLSI network design. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and Management Science, vol. 7. Elsevier, Amsterdam (1995)
286.
go back to reference Müller, D.: Fast resource sharing in VLSI routing. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (2009) Müller, D.: Fast resource sharing in VLSI routing. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (2009)
287.
go back to reference Müller-Hannemann, M., Peyer, S.: Approximation of rectilinear Steiner trees with length restrictions on obstacles. In: Workshop on Algorithms and Data Structures (WADS), Ottawa. Lecture Notes in Computer Science, vol. 2748, pp. 207–218. Springer, Berlin/Heidelberg (2003) Müller-Hannemann, M., Peyer, S.: Approximation of rectilinear Steiner trees with length restrictions on obstacles. In: Workshop on Algorithms and Data Structures (WADS), Ottawa. Lecture Notes in Computer Science, vol. 2748, pp. 207–218. Springer, Berlin/Heidelberg (2003)
289.
go back to reference Naor, J., Schieber, B.: Improved approximations for shallow-light spanning trees. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach, pp. 536–541 (1997) Naor, J., Schieber, B.: Improved approximations for shallow-light spanning trees. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach, pp. 536–541 (1997)
293.
go back to reference Nieberg, T.: Gridless pin access in detailed routing. In: Proceedings of the 48th ACM/IEEE Design Automation Conference (DAC), San Diego, pp. 170–175 (2011) Nieberg, T.: Gridless pin access in detailed routing. In: Proceedings of the 48th ACM/IEEE Design Automation Conference (DAC), San Diego, pp. 170–175 (2011)
294.
go back to reference Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms, Rome. Lecture Notes in Computer Science, vol. 2461, pp. 760–772. Springer, Berlin/Heidelberg (2002) Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms, Rome. Lecture Notes in Computer Science, vol. 2461, pp. 760–772. Springer, Berlin/Heidelberg (2002)
301.
go back to reference Pecht, M., Wong, Y.T.: Advanced Routing of Electronic Modules. CRC, New York (1996) Pecht, M., Wong, Y.T.: Advanced Routing of Electronic Modules. CRC, New York (1996)
302.
go back to reference Peyer, S.: Elmore-delay-optimale Steinerbäume im VLSI-Design. Master’s thesis, Research Institute for Discrete Mathematics, University of Bonn (2000) Peyer, S.: Elmore-delay-optimale Steinerbäume im VLSI-Design. Master’s thesis, Research Institute for Discrete Mathematics, University of Bonn (2000)
303.
go back to reference Peyer, S.: Shortest paths and Steiner trees in VLSI routing. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (2007) Peyer, S.: Shortest paths and Steiner trees in VLSI routing. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (2007)
304.
go back to reference Peyer, S., Zachariasen, M., Jørgensen, D.G.: Delay-related secondary objectives for rectilinear Steiner minimum trees. Discret. Appl. Math. 136, 271–298 (2004)CrossRefMATH Peyer, S., Zachariasen, M., Jørgensen, D.G.: Delay-related secondary objectives for rectilinear Steiner minimum trees. Discret. Appl. Math. 136, 271–298 (2004)CrossRefMATH
317.
320.
321.
go back to reference Rautenbach, D.: Rectilinear spanning trees versus bounding boxes. Electron. J. Comb. 11, N12 (2004)MathSciNet Rautenbach, D.: Rectilinear spanning trees versus bounding boxes. Electron. J. Comb. 11, N12 (2004)MathSciNet
322.
go back to reference Richards, D.S., Salowe, J.S.: A simple proof of Hwang’s theorem for rectilinear Steiner minimal trees. Ann. Oper. Res. 33, 549–556 (1991)CrossRefMATHMathSciNet Richards, D.S., Salowe, J.S.: A simple proof of Hwang’s theorem for rectilinear Steiner minimal trees. Ann. Oper. Res. 33, 549–556 (1991)CrossRefMATHMathSciNet
323.
go back to reference Richards, D.S., Salowe, J.S.: A linear-time algorithm to construct a rectilinear Steiner minimal tree for k-extremal point sets. Algorithmica 7(2/3), 247–276 (1992)CrossRefMATHMathSciNet Richards, D.S., Salowe, J.S.: A linear-time algorithm to construct a rectilinear Steiner minimal tree for k-extremal point sets. Algorithmica 7(2/3), 247–276 (1992)CrossRefMATHMathSciNet
325.
go back to reference Robins, G., Zelikovsky, A.: Minimum Steiner tree construction. In: Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (eds.) Handbook of Algorithms for Physical Design Automation, chapter 24, pp. 487–508. CRC, Boca Raton (2009) Robins, G., Zelikovsky, A.: Minimum Steiner tree construction. In: Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (eds.) Handbook of Algorithms for Physical Design Automation, chapter 24, pp. 487–508. CRC, Boca Raton (2009)
331.
go back to reference Sait, S.M., Youssef, H.: VLSI Physical Design Automation: Theory and Practice. World Scientific, Singapore (1999)CrossRef Sait, S.M., Youssef, H.: VLSI Physical Design Automation: Theory and Practice. World Scientific, Singapore (1999)CrossRef
332.
334.
go back to reference Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in an arbitrary metric space. Math. Program. 9, 240–246 (1975)CrossRefMATHMathSciNet Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in an arbitrary metric space. Math. Program. 9, 240–246 (1975)CrossRefMATHMathSciNet
336.
339.
go back to reference Sarrafzadeh, M., Wong, C.K.: An Introduction to VLSI Physical Design. McGraw-Hill, New York (1996) Sarrafzadeh, M., Wong, C.K.: An Introduction to VLSI Physical Design. McGraw-Hill, New York (1996)
340.
go back to reference Saxena, P., Shelar, R.S., Sapatnekar, S.: Routing Congestion in VLSI Circuits: Estimation and Optimization. Springer, New York (2007) Saxena, P., Shelar, R.S., Sapatnekar, S.: Routing Congestion in VLSI Circuits: Estimation and Optimization. Springer, New York (2007)
341.
go back to reference Scheifele, R.: Steiner trees with bounded RC-delay. In: 12th Workshop on Approximation and Online Algorithms, Wroclaw (2014) Scheifele, R.: Steiner trees with bounded RC-delay. In: 12th Workshop on Approximation and Online Algorithms, Wroclaw (2014)
347.
go back to reference Sherwani, N.A.: Algorithms for VLSI Physical Design Automation, 3rd edn. Kluwer Academic, Boston (1999)MATH Sherwani, N.A.: Algorithms for VLSI Physical Design Automation, 3rd edn. Kluwer Academic, Boston (1999)MATH
348.
go back to reference Sirodenko, A.F.: Minimal rectilinear Steiner trees. Diskretnaya Matematika 1, 28–37 (1989)MathSciNet Sirodenko, A.F.: Minimal rectilinear Steiner trees. Diskretnaya Matematika 1, 28–37 (1989)MathSciNet
356.
359.
go back to reference Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circuits Syst. 36(9), 1230–1234 (1989)CrossRefMathSciNet Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circuits Syst. 36(9), 1230–1234 (1989)CrossRefMathSciNet
364.
go back to reference Thomas, D.A., Weng, J.F.: Polynomial time algorithms for the rectilinear Steiner tree problem. In: Cheng, X., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 405–426. Springer, New York (2001)CrossRef Thomas, D.A., Weng, J.F.: Polynomial time algorithms for the rectilinear Steiner tree problem. In: Cheng, X., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 405–426. Springer, New York (2001)CrossRef
366.
go back to reference Thomborson, C.D., Alpern, B., Carter, L.: Rectilinear Steiner tree minimization on a workstation. In: Dean, N., Shannon, G.E. (eds.) Discrete Mathematics and Theoretical Computer Science. Computational Support for Discrete Mathematics, DIMACS Series, vol. 15. American Mathematical Society, Providence (1994) Thomborson, C.D., Alpern, B., Carter, L.: Rectilinear Steiner tree minimization on a workstation. In: Dean, N., Shannon, G.E. (eds.) Discrete Mathematics and Theoretical Computer Science. Computational Support for Discrete Mathematics, DIMACS Series, vol. 15. American Mathematical Society, Providence (1994)
372.
go back to reference Uchoa, E., Poggi de Aragão, M., Ribeiro, C.: Preprocessing Steiner problems from VLSI layout. Technical report MCC. 32/99, PUC-Rio (1999) Uchoa, E., Poggi de Aragão, M., Ribeiro, C.: Preprocessing Steiner problems from VLSI layout. Technical report MCC. 32/99, PUC-Rio (1999)
378.
go back to reference Vygen, J.: Theory of VLSI Layout. Habilitation, University of Bonn (2001) Vygen, J.: Theory of VLSI Layout. Habilitation, University of Bonn (2001)
380.
go back to reference Wagner, W.H.: Problems in the classification of ferns. In: Bailey, D.L. (ed) Recent Advances in Botany, pp. 841–844. University of Toronto Press, Toronto (1961) Wagner, W.H.: Problems in the classification of ferns. In: Bailey, D.L. (ed) Recent Advances in Botany, pp. 841–844. University of Toronto Press, Toronto (1961)
381.
386.
go back to reference Warme, D.M.: Spanning trees in hypergraphs with applications to Steiner trees. PhD thesis, University of Virginia (1998) Warme, D.M.: Spanning trees in hypergraphs with applications to Steiner trees. PhD thesis, University of Virginia (1998)
388.
go back to reference Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer Academic, Boston (2000)CrossRef Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer Academic, Boston (2000)CrossRef
410.
go back to reference Wulff-Nilsen, C.: Higher dimensional rectilinear Steiner minimal trees. Master’s thesis, Department of Computer Science, University of Copenhagen (2006) Wulff-Nilsen, C.: Higher dimensional rectilinear Steiner minimal trees. Master’s thesis, Department of Computer Science, University of Copenhagen (2006)
411.
go back to reference Wulff-Nilsen, C.: Bounding the expected number of rectilinear full Steiner trees. Networks 56(1), 1–10 (2010)MATHMathSciNet Wulff-Nilsen, C.: Bounding the expected number of rectilinear full Steiner trees. Networks 56(1), 1–10 (2010)MATHMathSciNet
421.
go back to reference Yang, Y.Y., Wing, O.: An algorithm for the wiring problem. In: Digest of the IEEE International Symposium on Electrical Networks, London, pp. 14–15 (1971) Yang, Y.Y., Wing, O.: An algorithm for the wiring problem. In: Digest of the IEEE International Symposium on Electrical Networks, London, pp. 14–15 (1971)
422.
go back to reference Yang, Y.Y., Wing, O.: Suboptimal algorithm for a wire routing problem. IEEE Trans. Circuit Theory 19(5), 508–510 (1972)CrossRefMathSciNet Yang, Y.Y., Wing, O.: Suboptimal algorithm for a wire routing problem. IEEE Trans. Circuit Theory 19(5), 508–510 (1972)CrossRefMathSciNet
423.
429.
go back to reference Zachariasen, M.: The rectilinear Steiner tree problem: a tutorial. In: Du, D.-Z., Cheng, X. (eds.) Steiner Trees in Industries, pp. 467–507. Kluwer Academic, Boston (2001)CrossRef Zachariasen, M.: The rectilinear Steiner tree problem: a tutorial. In: Du, D.-Z., Cheng, X. (eds.) Steiner Trees in Industries, pp. 467–507. Kluwer Academic, Boston (2001)CrossRef
432.
Metadata
Title
Rectilinear Steiner Trees
Authors
Marcus Brazil
Martin Zachariasen
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-13915-9_3

Premium Partner