Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Rectilinear Steiner Trees

verfasst von : Marcus Brazil, Martin Zachariasen

Erschienen in: Optimal Interconnection Trees in the Plane

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rectilinear Steiner tree problem, which is the most important form of the Steiner tree problem in terms of current applications (mostly involving the design of microchips), is the subject of this chapter. We have attempted to make the chapter reasonably self-contained, although a familiarity with some of the concepts in the earlier chapters, such as direction sets and canonical forms, is assumed. Here the fundamental properties are described in the first section, followed by global properties, two different algorithmic approaches and a discussion of special sets of points for which polynomial-time algorithms exist.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The more general definition of a cross, for any norm, is given in Sect. 1.​6.​2 Clearly, the definition in this chapter is consistent with the more general definition.
 
2
The Hwang form is named after Frank K. Hwang, who gave the characterisation in his seminal paper from 1976 [209]. A simpler proof of the Hwang form was given by Richards and Salowe [322] (see also Zachariasen [429]). In this book we give a proof that is based on the theory of canonical forms developed for general fixed orientation metrics in Chap. 2.
 
3
One of the first probabilistic bounds on the number of full components was given by Salowe and Warme [332] in 1995. They showed that for a set of randomly and uniformly distributed terminals, the expected number of full components spanning k terminals, where k is a constant, is O(n 2). Also, for \(k = \Omega (n)\) they proved that the expected number of full components spanning k terminals is O(1). Zachariasen [427] showed that the expected number of full components spanning k terminals, and satisfying the rectangle property and a simplified bottleneck Steiner distance property, is O(n(loglogn) k−2). Finally, Fößmeier and Kaufmann [155] showed that the expected number of full components satisfying the tree star property is \(O(n \cdot 2^{\sqrt{n\log n}})\) with high probability.
 
4
The first computer code to compute minimum rectilinear Steiner trees appears to have been developed by Yang and Wing [421] in 1971. The algorithm used a reduction to the Hanan grid, and solved the graph problem using a branch-and-bound algorithm for graphs. The largest solved problem had 9 terminals, and it was solved on a reduced Hanan grid with 20 vertices and 31 edges – pruned using a path-convex hull approach. In a follow-up paper from 1972, Yang and Wing [422] mentioned that by using the Dreyfus and Wagner dynamic programming algorithm [131], it should be possible to solve problems with 14 terminals in a couple of minutes, but problems with 18 terminals would require more than a day of computing time. In 1989, Sirodenko [348] presented an approach that allowed problems with up to 11 terminals to be solved. In the early 1990s, a number of papers appeared. Ganley and Cohoon [161] presented a dynamic programming algorithm that made it possible to solve problems with up to 16 terminals; an improved FST-based dynamic programming algorithm increased the range to 18 terminals [162]. Using a considerable engineering effort, Thomborson et al. [366] managed to solve problem instances with up to 23 terminals. Shortly after, Salowe and Warme [332] suggested a GeoSteiner approach, allowing the solution of problem instances with more than 30 terminals; Hetzel [195] pushed the range to 50 terminals. The real breakthrough occurred a few years later when Warme [386] in 1998 computed minimum rectilinear Steiner trees for problem instances with more than 1,000 terminals.
 
5
In the original papers on the FLUTE algorithm a minimal wire length vector is called a potentially optimal wire length (POWL) vector. We find that the prefix ‘minimal’ better characterises the properties of these vectors, namely that they are the ones that are locally minimal under domination.
 
6
In addition to the references to the primary sources given in this section, more details on some of the results discussed here can also be found in Part III, Chapter 3 of Hwang et al. [211] and in the survey article of Thomas and Weng [364].
 
7
A classical paper on the physical layout of circuits, including the design of printed circuit boards, is that of Soukup [356]. A more recent overview of mathematical methods for the physical layout of printed circuit boards can be found in [1].
 
8
The literature on the physical design of integrated circuits is vast. Some fairly recent books and theses include – in chronological order – Lengauer [249], Kahng and Robins [229], Pecht and Wong [301], Sarrafzadeh and Wong [339], Gerez [173], Sait and Youssef [331], Sherwani [347], Vygen [378], Saxena et al. [340] and Kahng et al. [226]. Some early contributions on the routing problem are Yang and Wing [423] and Hightower [196]; more recent surveys can be found in Möhring et al. [284], Cong et al. [118], Peyer [303], Moffitt et al. [283], Moffitt [282], Müller [286], Robins and Zelikovsky [325], Alpert et al. [10] and Gester et al. [175]. The list of combinatorial problems in chip design recently compiled by Korte and Vygen [238] illustrates the challenges in the field. The authors consider the chip design problem to be one of the most important application areas in (discrete) mathematics. In particular, efficient algorithms are needed to handle problems with millions of modules and nets.
 
Literatur
1.
Zurück zum Zitat Abboud, N., Grötschel, M., Koch, T.: Mathematical methods for physical layout of printed circuit boards: an overview. OR Spectr. 30(3), 453–468 (2008)CrossRefMATH Abboud, N., Grötschel, M., Koch, T.: Mathematical methods for physical layout of printed circuit boards: an overview. OR Spectr. 30(3), 453–468 (2008)CrossRefMATH
4.
Zurück zum Zitat Aho, A.V., Garey, M.R., Hwang, F.K.: Rectilinear Steiner trees: efficient special-case algorithms. Networks 7(1), 37–58 (1977)CrossRefMATHMathSciNet Aho, A.V., Garey, M.R., Hwang, F.K.: Rectilinear Steiner trees: efficient special-case algorithms. Networks 7(1), 37–58 (1977)CrossRefMATHMathSciNet
9.
Zurück zum Zitat Alpert, C.J., Hu, T.C., Huang, J.H., Kahng, A.B.: A direct combination of the Prim and Dijkstra constructions for improved performance-driven global routing. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Chicago, pp. 1868–1872 (1993) Alpert, C.J., Hu, T.C., Huang, J.H., Kahng, A.B.: A direct combination of the Prim and Dijkstra constructions for improved performance-driven global routing. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Chicago, pp. 1868–1872 (1993)
10.
Zurück zum Zitat Alpert, C.J., Li, Z., Moffitt, M.D., Nam, G.-J., Roy, J.A., Tellez, G.: What makes a design difficult to route. In: Proceedings of the 19th ACM International Symposium on Physical Design (ISPD), New York, pp. 7–12 (2010) Alpert, C.J., Li, Z., Moffitt, M.D., Nam, G.-J., Roy, J.A., Tellez, G.: What makes a design difficult to route. In: Proceedings of the 19th ACM International Symposium on Physical Design (ISPD), New York, pp. 7–12 (2010)
11.
Zurück zum Zitat Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (ed.): Handbook of Algorithms for Physical Design Automation. CRC, London (2009)MATH Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (ed.): Handbook of Algorithms for Physical Design Automation. CRC, London (2009)MATH
13.
Zurück zum Zitat Althaus, E., Kupilas, J., Naujoks, R.: On the low-dimensional Steiner minimum tree problem in Hamming metric. Theor. Comput. Sci. 505, 2–10 (2013)CrossRefMATHMathSciNet Althaus, E., Kupilas, J., Naujoks, R.: On the low-dimensional Steiner minimum tree problem in Hamming metric. Theor. Comput. Sci. 505, 2–10 (2013)CrossRefMATHMathSciNet
14.
Zurück zum Zitat Althaus, E., Naujoks, R.: Computing Steiner minimum trees in Hamming metric. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), Miami, pp. 172–181 (2006) Althaus, E., Naujoks, R.: Computing Steiner minimum trees in Hamming metric. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), Miami, pp. 172–181 (2006)
19.
20.
Zurück zum Zitat Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication protocols. In: Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing (PODC), New York, pp. 177–187 (1990) Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication protocols. In: Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing (PODC), New York, pp. 177–187 (1990)
24.
Zurück zum Zitat Bartoschek, C., Held, S., Maßberg, J., Rautenbach, D., Vygen, J.: The repeater tree construction problem. Inf. Process. Lett. 110(24), 1079–1083 (2010)CrossRef Bartoschek, C., Held, S., Maßberg, J., Rautenbach, D., Vygen, J.: The repeater tree construction problem. Inf. Process. Lett. 110(24), 1079–1083 (2010)CrossRef
27.
30.
Zurück zum Zitat Bern, M., Bienstock, D.: Polynomially solvable special cases of the Steiner problem in planar networks. Ann. Oper. Res. 33(6), 403–418 (1991)CrossRefMathSciNet Bern, M., Bienstock, D.: Polynomially solvable special cases of the Steiner problem in planar networks. Ann. Oper. Res. 33(6), 403–418 (1991)CrossRefMathSciNet
33.
Zurück zum Zitat Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Rectilinear Steiner trees with minimum Elmore delay. In: Proceedings of the ACM Design Automation Conference (DAC), San Francisco, pp. 381–386 (1994) Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Rectilinear Steiner trees with minimum Elmore delay. In: Proceedings of the ACM Design Automation Conference (DAC), San Francisco, pp. 381–386 (1994)
35.
Zurück zum Zitat Boese, K.D., Kahng, A.B., Robins, G.: High-performance routing trees with identified critical sinks. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 182–187 (1993) Boese, K.D., Kahng, A.B., Robins, G.: High-performance routing trees with identified critical sinks. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 182–187 (1993)
40.
Zurück zum Zitat Boyd, S.P., Kim, S.-J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005)CrossRefMATHMathSciNet Boyd, S.P., Kim, S.-J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005)CrossRefMATHMathSciNet
41.
Zurück zum Zitat Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in Steiner trees. In: Proceedings of the ACM Design Automation Conference (DAC), Las Vegas, pp. 195–198 (2001) Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in Steiner trees. In: Proceedings of the ACM Design Automation Conference (DAC), Las Vegas, pp. 195–198 (2001)
42.
Zurück zum Zitat Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in rectilinear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(5), 605–615 (2003)CrossRef Bozorgzadeh, E., Kastner, R., Sarrafzadeh, M.: Creating and exploiting flexibility in rectilinear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(5), 605–615 (2003)CrossRef
64.
Zurück zum Zitat Brazil, M., Thomas, D.A., Weng, J.F.: A polynomial time algorithm for rectilinear Steiner trees with terminals constrained to curves. Networks 33(2), 145–155 (1999)CrossRefMATHMathSciNet Brazil, M., Thomas, D.A., Weng, J.F.: A polynomial time algorithm for rectilinear Steiner trees with terminals constrained to curves. Networks 33(2), 145–155 (1999)CrossRefMATHMathSciNet
67.
Zurück zum Zitat Brazil, M., Thomas, D.A., Weng, J.F.: Rectilinear Steiner minimal trees on parallel lines. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 27–37. Kluwer Academic, Boston (2000)CrossRef Brazil, M., Thomas, D.A., Weng, J.F.: Rectilinear Steiner minimal trees on parallel lines. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 27–37. Kluwer Academic, Boston (2000)CrossRef
89.
Zurück zum Zitat Cheng, S.-W.: The Steiner tree problem for terminals on the boundary of a rectilinear polygon. Theor. Comput. Sci. 237(1–2), 213–238 (2000)CrossRefMATH Cheng, S.-W.: The Steiner tree problem for terminals on the boundary of a rectilinear polygon. Theor. Comput. Sci. 237(1–2), 213–238 (2000)CrossRefMATH
90.
Zurück zum Zitat Cheng, S.-W., Lim, A., Wu, C.-T.: Optimal rectilinear Steiner tree for extremal point sets. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) Algorithms and Computation. Lecture Notes in Computer Science, vol. 762, pp. 523–532. Springer, Berlin/Heidelberg (1993) Cheng, S.-W., Lim, A., Wu, C.-T.: Optimal rectilinear Steiner tree for extremal point sets. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) Algorithms and Computation. Lecture Notes in Computer Science, vol. 762, pp. 523–532. Springer, Berlin/Heidelberg (1993)
91.
Zurück zum Zitat Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for extremal point sets. Technical report HKUST-CS95-20, Department of Computer Science, HKUST (1995) Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for extremal point sets. Technical report HKUST-CS95-20, Department of Computer Science, HKUST (1995)
92.
Zurück zum Zitat Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for extremal point sets (Extended Abstact). In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) Algorithms and Computations. Lecture Notes in Computer Science, vol. 1004, pp. 322–331. Springer, Berlin/Heidelberg (1995) Cheng, S.-W., Tang, C.-K.: A fast algorithm for computing optimal rectilinear Steiner trees for extremal point sets (Extended Abstact). In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) Algorithms and Computations. Lecture Notes in Computer Science, vol. 1004, pp. 322–331. Springer, Berlin/Heidelberg (1995)
101.
Zurück zum Zitat Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29, i189–i198 (2013)CrossRef Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29, i189–i198 (2013)CrossRef
102.
Zurück zum Zitat Chu, C.: FLUTE: Fast lookup table based wirelength estimation technique. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 696–701 (2004) Chu, C.: FLUTE: Fast lookup table based wirelength estimation technique. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), San Jose, pp. 696–701 (2004)
103.
Zurück zum Zitat Chu, C., Wong, Y.-C.: FLUTE: fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(1), 70–83 (2008)CrossRef Chu, C., Wong, Y.-C.: FLUTE: fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(1), 70–83 (2008)CrossRef
118.
Zurück zum Zitat Cong, J., He, L., Koh, C.-K., Madden, P.H.: Performance optimization of VLSI interconnect layout. Integr. VLSI J. 21, 1–94 (1996)CrossRefMATH Cong, J., He, L., Koh, C.-K., Madden, P.H.: Performance optimization of VLSI interconnect layout. Integr. VLSI J. 21, 1–94 (1996)CrossRefMATH
119.
Zurück zum Zitat Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Provably good performance-driven global routing. Comput. Aided Des. 11(6), 739–752 (1992) Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Provably good performance-driven global routing. Comput. Aided Des. 11(6), 739–752 (1992)
120.
Zurück zum Zitat Cong, J., Leung, K.S., Zhou, D.: Performance-driven interconnect design based on distributed RC delay model. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 606–611 (1993) Cong, J., Leung, K.S., Zhou, D.: Performance-driven interconnect design based on distributed RC delay model. In: Proceedings of the ACM Design Automation Conference (DAC), Dallas, pp. 606–611 (1993)
136.
148.
Zurück zum Zitat Elmore, W.C.: The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19, 55–63 (1948)CrossRef Elmore, W.C.: The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19, 55–63 (1948)CrossRef
151.
Zurück zum Zitat Farris, J.S.: Methods for computing Wagner trees. Syst. Zool. 19(1), 83–92 (1970)CrossRef Farris, J.S.: Methods for computing Wagner trees. Syst. Zool. 19(1), 83–92 (1970)CrossRef
155.
Zurück zum Zitat Fößmeier, U., Kaufmann, M.: On exact solutions for the rectilinear Steiner tree problem. Part I: theoretical results. Algorithmica 26, 68–99 (2000)MATH Fößmeier, U., Kaufmann, M.: On exact solutions for the rectilinear Steiner tree problem. Part I: theoretical results. Algorithmica 26, 68–99 (2000)MATH
156.
157.
Zurück zum Zitat Frommer, I., Golden, B., Pundoor, G.: Heuristic methods for solving Euclidean non-uniform Steiner tree problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces, vol. 29, pp. 133–148. Springer, New York (2005)CrossRef Frommer, I., Golden, B., Pundoor, G.: Heuristic methods for solving Euclidean non-uniform Steiner tree problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces, vol. 29, pp. 133–148. Springer, New York (2005)CrossRef
159.
Zurück zum Zitat Fuchs, B., Kern, W., Wang, X.: The number of tree stars is O ∗(1. 357 k ). Electron. Notes Discret. Math. 25, 183–185 (2006) Fuchs, B., Kern, W., Wang, X.: The number of tree stars is O (1. 357 k ). Electron. Notes Discret. Math. 25, 183–185 (2006)
161.
Zurück zum Zitat Ganley, J.L., Cohoon, J.P.: A faster dynamic programming algorithm for exact rectilinear Steiner minimal trees. In: Proceedings of the Fourth Great Lakes Symposium on VLSI, South Bend, pp. 238–241 (1994) Ganley, J.L., Cohoon, J.P.: A faster dynamic programming algorithm for exact rectilinear Steiner minimal trees. In: Proceedings of the Fourth Great Lakes Symposium on VLSI, South Bend, pp. 238–241 (1994)
162.
Zurück zum Zitat Ganley, J.L., Cohoon, J.P.: Optimal rectilinear Steiner minimal trees in o(n 22. 62 n ) time. In: Proceedings of the Sixth Canadian Conference on Computational Geometry, Saskatoon, pp. 308–313 (1994) Ganley, J.L., Cohoon, J.P.: Optimal rectilinear Steiner minimal trees in o(n 22. 62 n ) time. In: Proceedings of the Sixth Canadian Conference on Computational Geometry, Saskatoon, pp. 308–313 (1994)
163.
Zurück zum Zitat Ganley, J.L., Cohoon, J.P.: Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles. In: IEEE Proceedings of the International Symposium on Circuits and Systems, London, pp. 113–116 (1994) Ganley, J.L., Cohoon, J.P.: Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles. In: IEEE Proceedings of the International Symposium on Circuits and Systems, London, pp. 113–116 (1994)
169.
173.
Zurück zum Zitat Gerez, S.H.: Algorithms for VLSI Design Automation. Wiley, New York (1999) Gerez, S.H.: Algorithms for VLSI Design Automation. Wiley, New York (1999)
175.
Zurück zum Zitat Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: Algorithms and data structures for fast and good VLSI routing. In: ACM Proceedings of the 49th Annual Design Automation Conference (DAC), New York, pp. 459–464 (2012) Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: Algorithms and data structures for fast and good VLSI routing. In: ACM Proceedings of the 49th Annual Design Automation Conference (DAC), New York, pp. 459–464 (2012)
192.
Zurück zum Zitat Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design. In: Chvatal, V. (ed.) Combinatorial Optimization: Methods and Applications, pp. 33–96. IOS, Amsterdam (2011) Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design. In: Chvatal, V. (ed.) Combinatorial Optimization: Methods and Applications, pp. 33–96. IOS, Amsterdam (2011)
193.
Zurück zum Zitat Held, S., Rotter, D.: Shallow-light Steiner arborescences with vertex delays. In: Goemans, M., Correa, J. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 7801, pp. 229–241. Springer, Berlin/Heidelberg (2013)CrossRef Held, S., Rotter, D.: Shallow-light Steiner arborescences with vertex delays. In: Goemans, M., Correa, J. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 7801, pp. 229–241. Springer, Berlin/Heidelberg (2013)CrossRef
194.
Zurück zum Zitat Held, S., Spirkl, S.T.: A fast algorithm for rectilinear Steiner trees with length restrictions on obstacles. In: Proceedings of the 2014 ACM International Symposium on Physical Design (ISPD), Petaluma, pp. 37–44 (2014) Held, S., Spirkl, S.T.: A fast algorithm for rectilinear Steiner trees with length restrictions on obstacles. In: Proceedings of the 2014 ACM International Symposium on Physical Design (ISPD), Petaluma, pp. 37–44 (2014)
195.
Zurück zum Zitat Hetzel, A.: Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles Lösungsverfahren. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (1995) Hetzel, A.: Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein sequentielles Lösungsverfahren. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (1995)
196.
Zurück zum Zitat Hightower, D.: The interconnection problem: a tutorial. Computer 7, 18–32 (1974)CrossRef Hightower, D.: The interconnection problem: a tutorial. Computer 7, 18–32 (1974)CrossRef
197.
Zurück zum Zitat Ho, J.-M., Vijayan, G., Wong, C.K.: New algorithms for the rectilinear Steiner tree problem. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9(2), 185–193 (1990)CrossRef Ho, J.-M., Vijayan, G., Wong, C.K.: New algorithms for the rectilinear Steiner tree problem. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9(2), 185–193 (1990)CrossRef
202.
Zurück zum Zitat Hou, H., Hu, J., Sapatnekar, S.S.: Non-Hanan routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18(4), 436–444 (1999)CrossRef Hou, H., Hu, J., Sapatnekar, S.S.: Non-Hanan routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18(4), 436–444 (1999)CrossRef
207.
Zurück zum Zitat Huang, T., Young, E.F.Y.: Construction of rectilinear Steiner minimum trees with slew constraints over obstacles. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), New York, pp. 144–151 (2012) Huang, T., Young, E.F.Y.: Construction of rectilinear Steiner minimum trees with slew constraints over obstacles. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), New York, pp. 144–151 (2012)
211.
Zurück zum Zitat Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics, vol. 53. Elsevier, Amsterdam (1992) Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics, vol. 53. Elsevier, Amsterdam (1992)
215.
Zurück zum Zitat Ihler, E.: The rectilinear class Steiner tree problem for intervals on two parallel lines. Math. Program. 63(3), 281–296 (1994)CrossRefMATHMathSciNet Ihler, E.: The rectilinear class Steiner tree problem for intervals on two parallel lines. Math. Program. 63(3), 281–296 (1994)CrossRefMATHMathSciNet
216.
224.
Zurück zum Zitat Jiang, T., Miller, Z., Pritkin, D.: Near optimal bounds for Steiner trees in the hypercube. SIAM J. Comput. 40, 1340–1360 (2011)CrossRefMATHMathSciNet Jiang, T., Miller, Z., Pritkin, D.: Near optimal bounds for Steiner trees in the hypercube. SIAM J. Comput. 40, 1340–1360 (2011)CrossRefMATHMathSciNet
226.
Zurück zum Zitat Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph Partitioning to Timing Closure. Springer, Dordrecht (2011)CrossRef Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph Partitioning to Timing Closure. Springer, Dordrecht (2011)CrossRef
229.
Zurück zum Zitat Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic, Boston (1995)CrossRefMATH Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic, Boston (1995)CrossRefMATH
232.
Zurück zum Zitat Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica 14, 305–321 (1995)CrossRefMATHMathSciNet Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica 14, 305–321 (1995)CrossRefMATHMathSciNet
238.
Zurück zum Zitat Korte, B., Vygen, J.: Combinatorial problems in chip design. In: Grötschel, M., Katona, G.O.H. (eds.) Building Bridges Between Mathematics and Computer Science, pp. 333–368. Springer, Berlin (2008) Korte, B., Vygen, J.: Combinatorial problems in chip design. In: Grötschel, M., Katona, G.O.H. (eds.) Building Bridges Between Mathematics and Computer Science, pp. 333–368. Springer, Berlin (2008)
243.
Zurück zum Zitat Lee, D.T., Chen, T.H., Yang, C.D.: Shortest rectilinear paths among weighted obstacles. In: Proceedings of the Sixth Annual ACM Symposium on Computational Geometry (SCG), New York, pp. 301–310 (1990) Lee, D.T., Chen, T.H., Yang, C.D.: Shortest rectilinear paths among weighted obstacles. In: Proceedings of the Sixth Annual ACM Symposium on Computational Geometry (SCG), New York, pp. 301–310 (1990)
246.
Zurück zum Zitat Lee, D.T., Yang, C.D., Chen, T.H.: Shortest rectilinear paths among weighted obstacles. Int. J. Comput. Geom. Appl. 1, 109–124 (1991)CrossRefMATHMathSciNet Lee, D.T., Yang, C.D., Chen, T.H.: Shortest rectilinear paths among weighted obstacles. Int. J. Comput. Geom. Appl. 1, 109–124 (1991)CrossRefMATHMathSciNet
249.
Zurück zum Zitat Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)MATH Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)MATH
271.
Zurück zum Zitat Măndoiu, I.I., Vazirani, V.V., Ganley, J.L.: A new heuristic for rectilinear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19, 1129–1139 (2000)CrossRef Măndoiu, I.I., Vazirani, V.V., Ganley, J.L.: A new heuristic for rectilinear Steiner trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19, 1129–1139 (2000)CrossRef
275.
Zurück zum Zitat Maßberg, J., Nieberg, T.: Rectilinear paths with minimum segment lengths. Discret. Appl. Math. 161(12), 1769–1775 (2013)CrossRefMATH Maßberg, J., Nieberg, T.: Rectilinear paths with minimum segment lengths. Discret. Appl. Math. 161(12), 1769–1775 (2013)CrossRefMATH
278.
Zurück zum Zitat Melzak, Z.A.: Companion to Concrete Mathematics, vol. II. Wiley, New York (1976) Melzak, Z.A.: Companion to Concrete Mathematics, vol. II. Wiley, New York (1976)
281.
Zurück zum Zitat Miller, Z., Pritkin, D.: Applying a result of Frankl and Rödl to the construction of Steiner trees in the hypercube. Discret. Math. 131, 183–194 (1994)CrossRefMATH Miller, Z., Pritkin, D.: Applying a result of Frankl and Rödl to the construction of Steiner trees in the hypercube. Discret. Math. 131, 183–194 (1994)CrossRefMATH
282.
Zurück zum Zitat Moffitt, M.D.: Global routing revisited. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), New York, pp. 805–808 (2009) Moffitt, M.D.: Global routing revisited. In: Proceedings ACM International Conference on Computer-Aided Design (ICCAD), New York, pp. 805–808 (2009)
283.
Zurück zum Zitat Moffitt, M.D., Roy, J.A., Markov, I.L.: The coming of age of (academic) global routing. In: Proceedings of the 2008 ACM International Symposium on Physical Design (ISPD), New York, pp. 148–155 (2008) Moffitt, M.D., Roy, J.A., Markov, I.L.: The coming of age of (academic) global routing. In: Proceedings of the 2008 ACM International Symposium on Physical Design (ISPD), New York, pp. 148–155 (2008)
284.
Zurück zum Zitat Möhring, R., Wagner, D., Wagner, F.: VLSI network design. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and Management Science, vol. 7. Elsevier, Amsterdam (1995) Möhring, R., Wagner, D., Wagner, F.: VLSI network design. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and Management Science, vol. 7. Elsevier, Amsterdam (1995)
286.
Zurück zum Zitat Müller, D.: Fast resource sharing in VLSI routing. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (2009) Müller, D.: Fast resource sharing in VLSI routing. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (2009)
287.
Zurück zum Zitat Müller-Hannemann, M., Peyer, S.: Approximation of rectilinear Steiner trees with length restrictions on obstacles. In: Workshop on Algorithms and Data Structures (WADS), Ottawa. Lecture Notes in Computer Science, vol. 2748, pp. 207–218. Springer, Berlin/Heidelberg (2003) Müller-Hannemann, M., Peyer, S.: Approximation of rectilinear Steiner trees with length restrictions on obstacles. In: Workshop on Algorithms and Data Structures (WADS), Ottawa. Lecture Notes in Computer Science, vol. 2748, pp. 207–218. Springer, Berlin/Heidelberg (2003)
289.
Zurück zum Zitat Naor, J., Schieber, B.: Improved approximations for shallow-light spanning trees. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach, pp. 536–541 (1997) Naor, J., Schieber, B.: Improved approximations for shallow-light spanning trees. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach, pp. 536–541 (1997)
293.
Zurück zum Zitat Nieberg, T.: Gridless pin access in detailed routing. In: Proceedings of the 48th ACM/IEEE Design Automation Conference (DAC), San Diego, pp. 170–175 (2011) Nieberg, T.: Gridless pin access in detailed routing. In: Proceedings of the 48th ACM/IEEE Design Automation Conference (DAC), San Diego, pp. 170–175 (2011)
294.
Zurück zum Zitat Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms, Rome. Lecture Notes in Computer Science, vol. 2461, pp. 760–772. Springer, Berlin/Heidelberg (2002) Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms, Rome. Lecture Notes in Computer Science, vol. 2461, pp. 760–772. Springer, Berlin/Heidelberg (2002)
301.
Zurück zum Zitat Pecht, M., Wong, Y.T.: Advanced Routing of Electronic Modules. CRC, New York (1996) Pecht, M., Wong, Y.T.: Advanced Routing of Electronic Modules. CRC, New York (1996)
302.
Zurück zum Zitat Peyer, S.: Elmore-delay-optimale Steinerbäume im VLSI-Design. Master’s thesis, Research Institute for Discrete Mathematics, University of Bonn (2000) Peyer, S.: Elmore-delay-optimale Steinerbäume im VLSI-Design. Master’s thesis, Research Institute for Discrete Mathematics, University of Bonn (2000)
303.
Zurück zum Zitat Peyer, S.: Shortest paths and Steiner trees in VLSI routing. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (2007) Peyer, S.: Shortest paths and Steiner trees in VLSI routing. PhD thesis, Research Institute for Discrete Mathematics, University of Bonn (2007)
304.
Zurück zum Zitat Peyer, S., Zachariasen, M., Jørgensen, D.G.: Delay-related secondary objectives for rectilinear Steiner minimum trees. Discret. Appl. Math. 136, 271–298 (2004)CrossRefMATH Peyer, S., Zachariasen, M., Jørgensen, D.G.: Delay-related secondary objectives for rectilinear Steiner minimum trees. Discret. Appl. Math. 136, 271–298 (2004)CrossRefMATH
317.
320.
Zurück zum Zitat Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner arborescence problem. Algorithmica 7, 277–288 (1992)CrossRefMATHMathSciNet Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner arborescence problem. Algorithmica 7, 277–288 (1992)CrossRefMATHMathSciNet
321.
Zurück zum Zitat Rautenbach, D.: Rectilinear spanning trees versus bounding boxes. Electron. J. Comb. 11, N12 (2004)MathSciNet Rautenbach, D.: Rectilinear spanning trees versus bounding boxes. Electron. J. Comb. 11, N12 (2004)MathSciNet
322.
Zurück zum Zitat Richards, D.S., Salowe, J.S.: A simple proof of Hwang’s theorem for rectilinear Steiner minimal trees. Ann. Oper. Res. 33, 549–556 (1991)CrossRefMATHMathSciNet Richards, D.S., Salowe, J.S.: A simple proof of Hwang’s theorem for rectilinear Steiner minimal trees. Ann. Oper. Res. 33, 549–556 (1991)CrossRefMATHMathSciNet
323.
Zurück zum Zitat Richards, D.S., Salowe, J.S.: A linear-time algorithm to construct a rectilinear Steiner minimal tree for k-extremal point sets. Algorithmica 7(2/3), 247–276 (1992)CrossRefMATHMathSciNet Richards, D.S., Salowe, J.S.: A linear-time algorithm to construct a rectilinear Steiner minimal tree for k-extremal point sets. Algorithmica 7(2/3), 247–276 (1992)CrossRefMATHMathSciNet
325.
Zurück zum Zitat Robins, G., Zelikovsky, A.: Minimum Steiner tree construction. In: Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (eds.) Handbook of Algorithms for Physical Design Automation, chapter 24, pp. 487–508. CRC, Boca Raton (2009) Robins, G., Zelikovsky, A.: Minimum Steiner tree construction. In: Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (eds.) Handbook of Algorithms for Physical Design Automation, chapter 24, pp. 487–508. CRC, Boca Raton (2009)
331.
Zurück zum Zitat Sait, S.M., Youssef, H.: VLSI Physical Design Automation: Theory and Practice. World Scientific, Singapore (1999)CrossRef Sait, S.M., Youssef, H.: VLSI Physical Design Automation: Theory and Practice. World Scientific, Singapore (1999)CrossRef
332.
334.
Zurück zum Zitat Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in an arbitrary metric space. Math. Program. 9, 240–246 (1975)CrossRefMATHMathSciNet Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in an arbitrary metric space. Math. Program. 9, 240–246 (1975)CrossRefMATHMathSciNet
336.
339.
Zurück zum Zitat Sarrafzadeh, M., Wong, C.K.: An Introduction to VLSI Physical Design. McGraw-Hill, New York (1996) Sarrafzadeh, M., Wong, C.K.: An Introduction to VLSI Physical Design. McGraw-Hill, New York (1996)
340.
Zurück zum Zitat Saxena, P., Shelar, R.S., Sapatnekar, S.: Routing Congestion in VLSI Circuits: Estimation and Optimization. Springer, New York (2007) Saxena, P., Shelar, R.S., Sapatnekar, S.: Routing Congestion in VLSI Circuits: Estimation and Optimization. Springer, New York (2007)
341.
Zurück zum Zitat Scheifele, R.: Steiner trees with bounded RC-delay. In: 12th Workshop on Approximation and Online Algorithms, Wroclaw (2014) Scheifele, R.: Steiner trees with bounded RC-delay. In: 12th Workshop on Approximation and Online Algorithms, Wroclaw (2014)
347.
Zurück zum Zitat Sherwani, N.A.: Algorithms for VLSI Physical Design Automation, 3rd edn. Kluwer Academic, Boston (1999)MATH Sherwani, N.A.: Algorithms for VLSI Physical Design Automation, 3rd edn. Kluwer Academic, Boston (1999)MATH
348.
Zurück zum Zitat Sirodenko, A.F.: Minimal rectilinear Steiner trees. Diskretnaya Matematika 1, 28–37 (1989)MathSciNet Sirodenko, A.F.: Minimal rectilinear Steiner trees. Diskretnaya Matematika 1, 28–37 (1989)MathSciNet
353.
356.
359.
Zurück zum Zitat Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circuits Syst. 36(9), 1230–1234 (1989)CrossRefMathSciNet Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circuits Syst. 36(9), 1230–1234 (1989)CrossRefMathSciNet
364.
Zurück zum Zitat Thomas, D.A., Weng, J.F.: Polynomial time algorithms for the rectilinear Steiner tree problem. In: Cheng, X., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 405–426. Springer, New York (2001)CrossRef Thomas, D.A., Weng, J.F.: Polynomial time algorithms for the rectilinear Steiner tree problem. In: Cheng, X., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 405–426. Springer, New York (2001)CrossRef
366.
Zurück zum Zitat Thomborson, C.D., Alpern, B., Carter, L.: Rectilinear Steiner tree minimization on a workstation. In: Dean, N., Shannon, G.E. (eds.) Discrete Mathematics and Theoretical Computer Science. Computational Support for Discrete Mathematics, DIMACS Series, vol. 15. American Mathematical Society, Providence (1994) Thomborson, C.D., Alpern, B., Carter, L.: Rectilinear Steiner tree minimization on a workstation. In: Dean, N., Shannon, G.E. (eds.) Discrete Mathematics and Theoretical Computer Science. Computational Support for Discrete Mathematics, DIMACS Series, vol. 15. American Mathematical Society, Providence (1994)
372.
Zurück zum Zitat Uchoa, E., Poggi de Aragão, M., Ribeiro, C.: Preprocessing Steiner problems from VLSI layout. Technical report MCC. 32/99, PUC-Rio (1999) Uchoa, E., Poggi de Aragão, M., Ribeiro, C.: Preprocessing Steiner problems from VLSI layout. Technical report MCC. 32/99, PUC-Rio (1999)
378.
Zurück zum Zitat Vygen, J.: Theory of VLSI Layout. Habilitation, University of Bonn (2001) Vygen, J.: Theory of VLSI Layout. Habilitation, University of Bonn (2001)
380.
Zurück zum Zitat Wagner, W.H.: Problems in the classification of ferns. In: Bailey, D.L. (ed) Recent Advances in Botany, pp. 841–844. University of Toronto Press, Toronto (1961) Wagner, W.H.: Problems in the classification of ferns. In: Bailey, D.L. (ed) Recent Advances in Botany, pp. 841–844. University of Toronto Press, Toronto (1961)
381.
386.
Zurück zum Zitat Warme, D.M.: Spanning trees in hypergraphs with applications to Steiner trees. PhD thesis, University of Virginia (1998) Warme, D.M.: Spanning trees in hypergraphs with applications to Steiner trees. PhD thesis, University of Virginia (1998)
388.
Zurück zum Zitat Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer Academic, Boston (2000)CrossRef Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer Academic, Boston (2000)CrossRef
410.
Zurück zum Zitat Wulff-Nilsen, C.: Higher dimensional rectilinear Steiner minimal trees. Master’s thesis, Department of Computer Science, University of Copenhagen (2006) Wulff-Nilsen, C.: Higher dimensional rectilinear Steiner minimal trees. Master’s thesis, Department of Computer Science, University of Copenhagen (2006)
411.
Zurück zum Zitat Wulff-Nilsen, C.: Bounding the expected number of rectilinear full Steiner trees. Networks 56(1), 1–10 (2010)MATHMathSciNet Wulff-Nilsen, C.: Bounding the expected number of rectilinear full Steiner trees. Networks 56(1), 1–10 (2010)MATHMathSciNet
421.
Zurück zum Zitat Yang, Y.Y., Wing, O.: An algorithm for the wiring problem. In: Digest of the IEEE International Symposium on Electrical Networks, London, pp. 14–15 (1971) Yang, Y.Y., Wing, O.: An algorithm for the wiring problem. In: Digest of the IEEE International Symposium on Electrical Networks, London, pp. 14–15 (1971)
422.
Zurück zum Zitat Yang, Y.Y., Wing, O.: Suboptimal algorithm for a wire routing problem. IEEE Trans. Circuit Theory 19(5), 508–510 (1972)CrossRefMathSciNet Yang, Y.Y., Wing, O.: Suboptimal algorithm for a wire routing problem. IEEE Trans. Circuit Theory 19(5), 508–510 (1972)CrossRefMathSciNet
423.
429.
Zurück zum Zitat Zachariasen, M.: The rectilinear Steiner tree problem: a tutorial. In: Du, D.-Z., Cheng, X. (eds.) Steiner Trees in Industries, pp. 467–507. Kluwer Academic, Boston (2001)CrossRef Zachariasen, M.: The rectilinear Steiner tree problem: a tutorial. In: Du, D.-Z., Cheng, X. (eds.) Steiner Trees in Industries, pp. 467–507. Kluwer Academic, Boston (2001)CrossRef
432.
Zurück zum Zitat Zachariasen, M., Rohe, A.: Rectilinear group Steiner trees and applications in VLSI design. Math. Program. 94, 407–433 (2003)CrossRefMATHMathSciNet Zachariasen, M., Rohe, A.: Rectilinear group Steiner trees and applications in VLSI design. Math. Program. 94, 407–433 (2003)CrossRefMATHMathSciNet
Metadaten
Titel
Rectilinear Steiner Trees
verfasst von
Marcus Brazil
Martin Zachariasen
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-13915-9_3