Skip to main content
Top
Published in: Cognitive Computation 5/2017

27-05-2017

Storages Are Not Forever

Authors: Erik Cambria, Anupam Chattopadhyay, Eike Linn, Bappaditya Mandal, Bebo White

Published in: Cognitive Computation | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Not unlike the concern over diminishing fossil fuel, information technology is bringing its own share of future worries. We chose to look closely into one concern in this paper, namely the limited amount of data storage. By a simple extrapolatory analysis, it is shown that we are on the way to exhaust our storage capacity in less than two centuries with current technology and no recycling. This can be taken as a note of caution to expand research initiative in several directions: firstly, bringing forth innovative data analysis techniques to represent, learn, and aggregate useful knowledge while filtering out noise from data; secondly, tap onto the interplay between storage and computing to minimize storage allocation; thirdly, explore ingenious solutions to expand storage capacity. Throughout this paper, we delve deeper into the state-of-the-art research and also put forth novel propositions in all of the abovementioned directions, including space- and time-efficient data representation, intelligent data aggregation, in-memory computing, extra-terrestrial storage, and data curation. The main aim of this paper is to raise awareness on the storage limitation we are about to face if current technology is adopted and the storage utilization growth rate persists. In the manuscript, we propose some storage solutions and a better utilization of storage capacity through a global DIKW hierarchy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference Loth S, Baumann S, Lutz CP, Eigler DM, Heinrich AJ. Bistability in atomic-scale antiferromagnets. Science. 2012;335(6065):196–9.CrossRefPubMed Loth S, Baumann S, Lutz CP, Eigler DM, Heinrich AJ. Bistability in atomic-scale antiferromagnets. Science. 2012;335(6065):196–9.CrossRefPubMed
9.
go back to reference Zhai Y, Ong Y-S, Tsang I. The emerging “big dimensionality”. IEEE Comput Intell Mag. 2014;9(3):14–26.CrossRef Zhai Y, Ong Y-S, Tsang I. The emerging “big dimensionality”. IEEE Comput Intell Mag. 2014;9(3):14–26.CrossRef
10.
go back to reference Haralickand R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 2007;3(6):610–21. Haralickand R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 2007;3(6):610–21.
11.
go back to reference Duda RO, Hart PE, Stork DG. Pattern classification. New York: Wiley; 2001. Duda RO, Hart PE, Stork DG. Pattern classification. New York: Wiley; 2001.
12.
go back to reference Zhu M, Martinez AM. Optimal subclass discovery for discriminant analysis. In: Conference on computer vision and pattern recognition workshop, 2004. CVPRW ’04. 2004. p. 97–104. Zhu M, Martinez AM. Optimal subclass discovery for discriminant analysis. In: Conference on computer vision and pattern recognition workshop, 2004. CVPRW ’04. 2004. p. 97–104.
13.
go back to reference Wang M, Li H-X, Chen X, Chen Y. Deep learning-based model reduction for distributed parameter systems. IEEE Trans Syst Man Cybern Syst. 2016;46(12):1664–74.CrossRef Wang M, Li H-X, Chen X, Chen Y. Deep learning-based model reduction for distributed parameter systems. IEEE Trans Syst Man Cybern Syst. 2016;46(12):1664–74.CrossRef
14.
go back to reference Dai B, Li H, Wei L. Image processing unit for general-purpose representation and association system for recognizing low-resolution digits with visual information variability. IEEE Trans Syst Man Cybern Syst. 2016. Dai B, Li H, Wei L. Image processing unit for general-purpose representation and association system for recognizing low-resolution digits with visual information variability. IEEE Trans Syst Man Cybern Syst. 2016.
15.
go back to reference Zhao H, Yuen PC. Incremental linear discriminant analysis for face recognition. IEEE Trans Syst Man Cybern Part B (Cybern). 2008;38(1):210–21.CrossRef Zhao H, Yuen PC. Incremental linear discriminant analysis for face recognition. IEEE Trans Syst Man Cybern Part B (Cybern). 2008;38(1):210–21.CrossRef
16.
go back to reference Schölkopf B, Mika S, Burges C, Knirsch P, Müller K-R, Rätsch G, Smola A. Input space versus feature space in kernel-based methods. IEEE Trans Neural Netw. 1999;10:1000–17.CrossRefPubMed Schölkopf B, Mika S, Burges C, Knirsch P, Müller K-R, Rätsch G, Smola A. Input space versus feature space in kernel-based methods. IEEE Trans Neural Netw. 1999;10:1000–17.CrossRefPubMed
17.
go back to reference Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR. Fisher discriminant analysis with kernels. In: Proceedings of the 1999 IEEE signal processing society workshop neural networks for signal processing IX. 1999. p. 41–48. Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR. Fisher discriminant analysis with kernels. In: Proceedings of the 1999 IEEE signal processing society workshop neural networks for signal processing IX. 1999. p. 41–48.
18.
go back to reference Jiang XD, Mandal B, Kot A. Eigenfeature regularization and extraction in face recognition. IEEE Trans Pattern Anal Mach Intell. 2008;30(3):383–94.CrossRefPubMed Jiang XD, Mandal B, Kot A. Eigenfeature regularization and extraction in face recognition. IEEE Trans Pattern Anal Mach Intell. 2008;30(3):383–94.CrossRefPubMed
19.
go back to reference Jiang XD, Mandal B, Kot A. Complete discriminant evaluation and feature extraction in kernel space for face recognition. Mach Vis Appl Springer. 2009;20(1):35–46.CrossRef Jiang XD, Mandal B, Kot A. Complete discriminant evaluation and feature extraction in kernel space for face recognition. Mach Vis Appl Springer. 2009;20(1):35–46.CrossRef
21.
go back to reference Taigman Y, Yang M, Ranzato M, Wolf L. Deepface: closing the gap to human-level performance in face verification. In: CVPR. Columbus; 2014. p. 1701–1708. Taigman Y, Yang M, Ranzato M, Wolf L. Deepface: closing the gap to human-level performance in face verification. In: CVPR. Columbus; 2014. p. 1701–1708.
22.
go back to reference Huang GB, Ramesh M, Berg Ta, Learned-Miller E. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49. University of Massachusetts, Amherst. 2007. Huang GB, Ramesh M, Berg Ta, Learned-Miller E. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49. University of Massachusetts, Amherst. 2007.
23.
go back to reference Wolf L, Hassner T, Maoz I. Face recognition in unconstrained video with matched background similarity. In: IEEE Conference on computer vision and pattern recognition. 2011. p. 529–534. Wolf L, Hassner T, Maoz I. Face recognition in unconstrained video with matched background similarity. In: IEEE Conference on computer vision and pattern recognition. 2011. p. 529–534.
24.
go back to reference Phillips PJ, Moon H, Rizvi S, Rauss P. The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell. 2000;22(10):1090–1104.CrossRef Phillips PJ, Moon H, Rizvi S, Rauss P. The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell. 2000;22(10):1090–1104.CrossRef
27.
go back to reference Swets DL, Weng J. Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell. 1996;18(8):831–6.CrossRef Swets DL, Weng J. Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell. 1996;18(8):831–6.CrossRef
28.
go back to reference Mandal B, Zhikai W, Li L, Kassim A. Whole space subclass discriminant analysis for face recognition. In: IEEE International conference on image processing (ICIP). Quebec City. Mandal B, Zhikai W, Li L, Kassim A. Whole space subclass discriminant analysis for face recognition. In: IEEE International conference on image processing (ICIP). Quebec City.
29.
go back to reference Balduzzi D. 2013. Randomized co-training: from cortical neurons to machine learning and back again. arXiv:1310.6536. Balduzzi D. 2013. Randomized co-training: from cortical neurons to machine learning and back again. arXiv:1310.​6536.
30.
go back to reference Menon AK, Elkan C. Fast algorithms for approximating the singular value decomposition. ACM Trans Knowl Discov Data (TKDD). 2011;5(2):13. Menon AK, Elkan C. Fast algorithms for approximating the singular value decomposition. ACM Trans Knowl Discov Data (TKDD). 2011;5(2):13.
31.
go back to reference Lee H, Grosse R, Ranganath R, Ng AY. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM. 2011;54(10):95–103.CrossRef Lee H, Grosse R, Ranganath R, Ng AY. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM. 2011;54(10):95–103.CrossRef
32.
go back to reference Bingham E, Mannila H. Random projection in dimensionality reduction: applications to image and text data. In: ACM SIGKDD. 2001. p. 245–250. Bingham E, Mannila H. Random projection in dimensionality reduction: applications to image and text data. In: ACM SIGKDD. 2001. p. 245–250.
33.
go back to reference Sarlos T. Improved approximation algorithms for large matrices via random projections. In: FOCS. 2006. p. 143–152. Sarlos T. Improved approximation algorithms for large matrices via random projections. In: FOCS. 2006. p. 143–152.
34.
go back to reference Achlioptas D. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J Comput Syst Sci. 2003;66(4):671–687.CrossRef Achlioptas D. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J Comput Syst Sci. 2003;66(4):671–687.CrossRef
35.
go back to reference Yichao L, Dhillon P, Foster DP, Ungar L. Faster ridge regression via the subsampled randomized hadamard transform. In: Advances in neural information processing systems. 2013. p. 369–377. Yichao L, Dhillon P, Foster DP, Ungar L. Faster ridge regression via the subsampled randomized hadamard transform. In: Advances in neural information processing systems. 2013. p. 369–377.
36.
go back to reference Tropp JA. Improved analysis of the subsampled randomized hadamard transform. Adv Adapt Data Anal. 2011;3(01n02):115–26.CrossRef Tropp JA. Improved analysis of the subsampled randomized hadamard transform. Adv Adapt Data Anal. 2011;3(01n02):115–26.CrossRef
37.
go back to reference Lewis L. 1994. Randomness and nondeterminism. In: International congress of mathematicians. Zurich. Lewis L. 1994. Randomness and nondeterminism. In: International congress of mathematicians. Zurich.
38.
go back to reference Kolmogorov A, Uspenskii V. Algorithms and randomness. Theor Veroyatnost i Primenen. 1987;3(32):389–412. Kolmogorov A, Uspenskii V. Algorithms and randomness. Theor Veroyatnost i Primenen. 1987;3(32):389–412.
39.
go back to reference Jiao L, Denoeux T, Pan Q. A hybrid belief rule-based classification system based on uncertain training data and expert knowledge. IEEE Trans Syst Man Cybern Syst. 2016;46(12):1711–23.CrossRef Jiao L, Denoeux T, Pan Q. A hybrid belief rule-based classification system based on uncertain training data and expert knowledge. IEEE Trans Syst Man Cybern Syst. 2016;46(12):1711–23.CrossRef
40.
go back to reference Cambria E, Huang G-B, et al. Extreme learning machines. IEEE Intell Syst. 2013;28(6):30–59.CrossRef Cambria E, Huang G-B, et al. Extreme learning machines. IEEE Intell Syst. 2013;28(6):30–59.CrossRef
41.
go back to reference Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1):489–501.CrossRef Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1):489–501.CrossRef
42.
go back to reference Huang G-B, Cambria E, Toh K-A, Widrow B, Zongben X. New trends of learning in computational intelligence. IEEE Comput Intell Mag. 2015;10(2):16–7.CrossRef Huang G-B, Cambria E, Toh K-A, Widrow B, Zongben X. New trends of learning in computational intelligence. IEEE Comput Intell Mag. 2015;10(2):16–7.CrossRef
43.
go back to reference Oneto L, Bisio F, Cambria E, Anguita D. Statistical learning theory and ELM for big social data analysis. IEEE Comput Intell Mag. 2016;11(3):45–55.CrossRef Oneto L, Bisio F, Cambria E, Anguita D. Statistical learning theory and ELM for big social data analysis. IEEE Comput Intell Mag. 2016;11(3):45–55.CrossRef
44.
go back to reference Oneto L, Bisio F, Cambria E, Anguita D. Semi-supervised learning for affective common-sense reasoning. Cogn Comput. 2017;9(1):18–42.CrossRef Oneto L, Bisio F, Cambria E, Anguita D. Semi-supervised learning for affective common-sense reasoning. Cogn Comput. 2017;9(1):18–42.CrossRef
45.
go back to reference Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376–90.CrossRef Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376–90.CrossRef
46.
go back to reference Ridella S, Rovetta S, Zunino R. Circular backpropagation networks for classification. IEEE Trans Neural Netw. 1997;8(1):84–97.CrossRefPubMed Ridella S, Rovetta S, Zunino R. Circular backpropagation networks for classification. IEEE Trans Neural Netw. 1997;8(1):84–97.CrossRefPubMed
47.
go back to reference Vogl TP, Mangis JK, Rigler AK, Zink WT, Alkon DL. Accelerating the convergence of the back-propagation method. Biol Cybern. 1988;59(4-5):257–63.CrossRef Vogl TP, Mangis JK, Rigler AK, Zink WT, Alkon DL. Accelerating the convergence of the back-propagation method. Biol Cybern. 1988;59(4-5):257–63.CrossRef
48.
go back to reference Huang G-B, Chen L, Siew C-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.CrossRefPubMed Huang G-B, Chen L, Siew C-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.CrossRefPubMed
49.
go back to reference Huang G-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2(2):107–122.CrossRef Huang G-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2(2):107–122.CrossRef
50.
go back to reference Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B: Cybern. 2012;42(2):513–29.CrossRef Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B: Cybern. 2012;42(2):513–29.CrossRef
51.
go back to reference Dyer M. Connectionist natural language processing: a status report, volume 292 of Computational architectures integrating neural and symbolic processes. Dordrecht: Kluwer Academic; 1995, pp. 389–429. Dyer M. Connectionist natural language processing: a status report, volume 292 of Computational architectures integrating neural and symbolic processes. Dordrecht: Kluwer Academic; 1995, pp. 389–429.
52.
go back to reference Cambria E, White B. Jumping NLP curves: a review of natural language processing research. IEEE Comput Intell Mag. 2014;9(2):48–57.CrossRef Cambria E, White B. Jumping NLP curves: a review of natural language processing research. IEEE Comput Intell Mag. 2014;9(2):48–57.CrossRef
53.
go back to reference Chaturvedi I, Ong Y-S, Tsang IW, Welsch RE, Cambria E. Learning word dependencies in text by means of a deep recurrent belief network. Knowl-Based Syst. 2016;108:144–54.CrossRef Chaturvedi I, Ong Y-S, Tsang IW, Welsch RE, Cambria E. Learning word dependencies in text by means of a deep recurrent belief network. Knowl-Based Syst. 2016;108:144–54.CrossRef
54.
go back to reference Rowley J. The wisdom hierarchy: representations of the DIKW hierarchy. J Inf Sci. 2007;33(2):163–180.CrossRef Rowley J. The wisdom hierarchy: representations of the DIKW hierarchy. J Inf Sci. 2007;33(2):163–180.CrossRef
55.
go back to reference Cambria E, Wang H, White B. Guest editorial: big social data analysis. Knowl-Based Syst. 2014;69:1–2.CrossRef Cambria E, Wang H, White B. Guest editorial: big social data analysis. Knowl-Based Syst. 2014;69:1–2.CrossRef
56.
go back to reference Cambria E, Hussain A. Sentic computing: a common-sense-based framework for concept-level sentiment analysis. Cham: Springer; 2015.CrossRef Cambria E, Hussain A. Sentic computing: a common-sense-based framework for concept-level sentiment analysis. Cham: Springer; 2015.CrossRef
57.
go back to reference Poria S, Cambria E, Gelbukh A, Bisio F, Hussain A. Sentiment data flow analysis by means of dynamic linguistic patterns. IEEE Comput Intell Mag. 2015;10(4):26–36. Poria S, Cambria E, Gelbukh A, Bisio F, Hussain A. Sentiment data flow analysis by means of dynamic linguistic patterns. IEEE Comput Intell Mag. 2015;10(4):26–36.
58.
go back to reference Cambria E, Poria S, Bajpai R, Schuller B. SenticNet 4: a semantic resource for sentiment analysis based on conceptual primitives. In: COLING. 2016. p. 2666–2677. Cambria E, Poria S, Bajpai R, Schuller B. SenticNet 4: a semantic resource for sentiment analysis based on conceptual primitives. In: COLING. 2016. p. 2666–2677.
59.
go back to reference Cambria E, Hussain A, Havasi C, Eckl C, Munro J. 2010. Towards crowd validation of the UK national health service. In: WebSci. Raleigh. Cambria E, Hussain A, Havasi C, Eckl C, Munro J. 2010. Towards crowd validation of the UK national health service. In: WebSci. Raleigh.
61.
go back to reference Menzel S, Linn E, Waser R. Redox-based resistive memory. Wiley; 2015. vol. 1, chapter 8, p. 137–161. Menzel S, Linn E, Waser R. Redox-based resistive memory. Wiley; 2015. vol. 1, chapter 8, p. 137–161.
62.
go back to reference Valov I, Tappertzhofen S, Linn E, Menzel S, van den Hurk J, Waser R. Atomic scale and interface interactions in redox-based resistive switching memories. ECS Trans. 2014;64(14):3–18.CrossRef Valov I, Tappertzhofen S, Linn E, Menzel S, van den Hurk J, Waser R. Atomic scale and interface interactions in redox-based resistive switching memories. ECS Trans. 2014;64(14):3–18.CrossRef
63.
go back to reference Zhirnov VV, Meade R, Cavin RK, Sandhu G. Scaling limits of resistive memories. Nanotechnology. 2011;22(25):254027/1–21.CrossRef Zhirnov VV, Meade R, Cavin RK, Sandhu G. Scaling limits of resistive memories. Nanotechnology. 2011;22(25):254027/1–21.CrossRef
64.
go back to reference Chien W-C, Lee M-H, Lee F-M, Lin Y-Y, Lung H-L, Hsieh K-Y, Lu C-Y. A multi-level 40nm WOX resistive memory with excellent reliability. In: 2011 IEEE international electron devices meeting IEDM ’11. 2011. Chien W-C, Lee M-H, Lee F-M, Lin Y-Y, Lung H-L, Hsieh K-Y, Lu C-Y. A multi-level 40nm WOX resistive memory with excellent reliability. In: 2011 IEEE international electron devices meeting IEDM ’11. 2011.
65.
go back to reference Kügeler C, Meier M, Rosezin R, Gilles S, Waser R. High density 3D memory architecture based on the resistive switching effect. Solid State Electron. 2009;53(12):1287–92.CrossRef Kügeler C, Meier M, Rosezin R, Gilles S, Waser R. High density 3D memory architecture based on the resistive switching effect. Solid State Electron. 2009;53(12):1287–92.CrossRef
67.
go back to reference Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 2008;453(7191):80–3.CrossRefPubMed Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 2008;453(7191):80–3.CrossRefPubMed
68.
go back to reference Chua LO, Kang SM. Memristive devices and systems. Proc IEEE. 1976;64(2):209–23.CrossRef Chua LO, Kang SM. Memristive devices and systems. Proc IEEE. 1976;64(2):209–23.CrossRef
69.
go back to reference Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature. 2010;464(7290):873–76.CrossRefPubMed Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature. 2010;464(7290):873–76.CrossRefPubMed
70.
go back to reference Linn E, Rosezin R, Tappertzhofen S, Böttger U, Waser R. Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations. Nanotechnology. 2012;23:305205.CrossRefPubMed Linn E, Rosezin R, Tappertzhofen S, Böttger U, Waser R. Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations. Nanotechnology. 2012;23:305205.CrossRefPubMed
71.
go back to reference Kim W, Chattopadhyay A, Siemon A, Linn E, Waser R, Rana V. Multistate memristive tantalum oxide devices for ternary arithmetic. Sci Rep 2016;6:36652 EP –, 11.CrossRef Kim W, Chattopadhyay A, Siemon A, Linn E, Waser R, Rana V. Multistate memristive tantalum oxide devices for ternary arithmetic. Sci Rep 2016;6:36652 EP –, 11.CrossRef
72.
go back to reference Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E. 2015. Realization of Boolean logic functionality using redox-based memristive devices. Adv Funct Mater. Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E. 2015. Realization of Boolean logic functionality using redox-based memristive devices. Adv Funct Mater.
73.
go back to reference Siemon A, Menzel S, Chattopadhyay A, Waser R, Linn E. 2015. In-memory adder functionality in 1S1R arrays. In: Proceedings of 2014 IEEE international symposium on circuits and systems (ISCAS). Siemon A, Menzel S, Chattopadhyay A, Waser R, Linn E. 2015. In-memory adder functionality in 1S1R arrays. In: Proceedings of 2014 IEEE international symposium on circuits and systems (ISCAS).
74.
go back to reference Siemon A, Menzel S, Waser R, Linn E. A complementary resistive switch-based crossbar array adder. IEEE J Emerg Sel Top Circ Syst. 2015;5(1):64–74.CrossRef Siemon A, Menzel S, Waser R, Linn E. A complementary resistive switch-based crossbar array adder. IEEE J Emerg Sel Top Circ Syst. 2015;5(1):64–74.CrossRef
75.
go back to reference Breuer T, Siemon A, Linn E, Menzel S, Waser R, Rana V. 2015. A HfO2-based complementary switching crossbar adder. Adv Electron Mater. Breuer T, Siemon A, Linn E, Menzel S, Waser R, Rana V. 2015. A HfO2-based complementary switching crossbar adder. Adv Electron Mater.
76.
go back to reference Bhattacharjee D, Chattopadhyay A. Efficient binary basic linear algebra operations on reram crossbar arrays. In: 2017 30th international conference on VLSI design and 2017 16th international conference on embedded systems (VLSID). 2017. p. 277–282. Bhattacharjee D, Chattopadhyay A. Efficient binary basic linear algebra operations on reram crossbar arrays. In: 2017 30th international conference on VLSI design and 2017 16th international conference on embedded systems (VLSID). 2017. p. 277–282.
77.
go back to reference Bhattacharjee D, Chattopadhyay A. In-memory data compression using ReRAMs. Springer International Publishing; 2017. p. 275–291. Bhattacharjee D, Chattopadhyay A. In-memory data compression using ReRAMs. Springer International Publishing; 2017. p. 275–291.
78.
82.
go back to reference Bekenstein JD. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys Rev D. 1981; 23(2):287–98.CrossRef Bekenstein JD. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys Rev D. 1981; 23(2):287–98.CrossRef
83.
go back to reference Church GM, Gao Y, Kosuri S. Next-generation digital information storage in DNA. Science. 2012;337(6102):1628.CrossRefPubMed Church GM, Gao Y, Kosuri S. Next-generation digital information storage in DNA. Science. 2012;337(6102):1628.CrossRefPubMed
85.
go back to reference Higgins S. The DCC curation lifecycle model. Int J Digit Curat. 2008;3(1):134–40.CrossRef Higgins S. The DCC curation lifecycle model. Int J Digit Curat. 2008;3(1):134–40.CrossRef
86.
go back to reference Klein G, Calderwood R, MacGregor D. Critical decision method for eliciting knowledge. IEEE Trans Syst Man Cybern. 2002;19(3):462–72.CrossRef Klein G, Calderwood R, MacGregor D. Critical decision method for eliciting knowledge. IEEE Trans Syst Man Cybern. 2002;19(3):462–72.CrossRef
Metadata
Title
Storages Are Not Forever
Authors
Erik Cambria
Anupam Chattopadhyay
Eike Linn
Bappaditya Mandal
Bebo White
Publication date
27-05-2017
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2017
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9482-4

Other articles of this Issue 5/2017

Cognitive Computation 5/2017 Go to the issue

Premium Partner