Skip to main content
Top
Published in: Archive of Applied Mechanics 7/2015

01-07-2015 | Original

Strain and velocity gradient theory for higher-order shear deformable beams

Authors: Saba Tahaei Yaghoubi, S. Mahmoud Mousavi, Juha Paavola

Published in: Archive of Applied Mechanics | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The strain and velocity gradient framework is formulated for the third-order shear deformable beam theory. A variational approach is applied to determine the governing equations together with initial and boundary conditions. Within the gradient framework, the strain energy is generalized to include strain as well as strain gradient. Furthermore, the kinetic energy is also generalized to include velocity and the velocity gradient. Such approach results in the introduction of the static and kinetic internal length scales. For dynamic analysis of beams, most of the gradient theories do not take the velocity gradient into account. The model developed in this paper depicts the influence of the velocity gradient on the governing equations and initial and boundary conditions of the third-order shear deformable theory. Through the assumption of the velocity gradients, kinematic quantities are distinguished on the microscale and on the macroscale. Finally, Timoshenko and Euler–Bernoulli beam theories are also presented by simplifying the third-order theory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akgöz, B., Civalek, Ö.: Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Curr. Appl. Phys. 11, 1133–1138 (2011)CrossRef Akgöz, B., Civalek, Ö.: Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Curr. Appl. Phys. 11, 1133–1138 (2011)CrossRef
2.
go back to reference Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)MATHCrossRef Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)MATHCrossRef
3.
go back to reference Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224, 2185–2201 (2013)MATHMathSciNetCrossRef Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224, 2185–2201 (2013)MATHMathSciNetCrossRef
4.
go back to reference Altan, B.S., Aifantis, E.C.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Met. 26, 319–324 (1992)CrossRef Altan, B.S., Aifantis, E.C.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Met. 26, 319–324 (1992)CrossRef
5.
go back to reference Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)MATHCrossRef Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)MATHCrossRef
6.
go back to reference Artan, R., Toksöz, A.: Stability analysis of gradient elastic beams by the method of initial value. Arch. Appl. Mech. 83, 1129–1144 (2013)CrossRef Artan, R., Toksöz, A.: Stability analysis of gradient elastic beams by the method of initial value. Arch. Appl. Mech. 83, 1129–1144 (2013)CrossRef
7.
go back to reference Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)CrossRef Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)CrossRef
8.
go back to reference Bickford, W.B.: A consistent higher order beam theory. Dev. Theor. Appl. Mech. 11, 137–150 (1982) Bickford, W.B.: A consistent higher order beam theory. Dev. Theor. Appl. Mech. 11, 137–150 (1982)
9.
go back to reference Challamel, N.: Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams. Compos. Struct. 105, 351–368 (2013)CrossRef Challamel, N.: Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams. Compos. Struct. 105, 351–368 (2013)CrossRef
10.
go back to reference Challamel, N., Ameur, M.: Out-of-plane buckling of microstructured beams: gradient elasticity approach. J. Eng. Mech. 139, 1036–1046 (2013)CrossRef Challamel, N., Ameur, M.: Out-of-plane buckling of microstructured beams: gradient elasticity approach. J. Eng. Mech. 139, 1036–1046 (2013)CrossRef
11.
go back to reference Dym, C.L., Shames, I.H.: Solid mechanics: a variational approach. Springer, New York (2013)CrossRef Dym, C.L., Shames, I.H.: Solid mechanics: a variational approach. Springer, New York (2013)CrossRef
12.
go back to reference Eringen, A.C.: Microcontinuum field theories I: foundations and solids. Springer, New York (1999)MATHCrossRef Eringen, A.C.: Microcontinuum field theories I: foundations and solids. Springer, New York (1999)MATHCrossRef
13.
go back to reference Gao, X.L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)MATHCrossRef Gao, X.L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)MATHCrossRef
14.
go back to reference Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)MATHCrossRef Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)MATHCrossRef
15.
go back to reference Lazar, M.: On gradient field theories: gradient magnetostatics and gradient elasticity. Philos. Mag. 94, 2840–2874 (2014) Lazar, M.: On gradient field theories: gradient magnetostatics and gradient elasticity. Philos. Mag. 94, 2840–2874 (2014)
16.
go back to reference Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184 (2005) Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184 (2005)
17.
go back to reference Lazar, M., Maugin, G.A., Aifantis, E.C.: On dislocations in a special class of generalized elasticity. Phys. Stat. Solidi (b) 242, 2365–2390 (2005)CrossRef Lazar, M., Maugin, G.A., Aifantis, E.C.: On dislocations in a special class of generalized elasticity. Phys. Stat. Solidi (b) 242, 2365–2390 (2005)CrossRef
18.
go back to reference Lazar, M., Maugin, G.A., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817 (2006) Lazar, M., Maugin, G.A., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817 (2006)
19.
go back to reference Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solids 29, 837–843 (2010)CrossRef Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solids 29, 837–843 (2010)CrossRef
20.
go back to reference Liang, X., Hu, S., Shen, S.: A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications. Compos. Struct. 111, 317–323 (2014)CrossRef Liang, X., Hu, S., Shen, S.: A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications. Compos. Struct. 111, 317–323 (2014)CrossRef
22.
go back to reference Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)CrossRef Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)CrossRef
24.
go back to reference Mousavi, S.M., Paavola, J.: Analysis of plate in second gradient elasticity. Arch. Appl. Mech. 84, 1135–1143 (2014)CrossRef Mousavi, S.M., Paavola, J.: Analysis of plate in second gradient elasticity. Arch. Appl. Mech. 84, 1135–1143 (2014)CrossRef
25.
go back to reference Mousavi, S.M., Paavola, J., Baroudi, D.: Distributed nonsingular dislocation technique for cracks in strain gradient elasticity. J. Mech. Behav. Mater. 23, 47–58 (2014) Mousavi, S.M., Paavola, J., Baroudi, D.: Distributed nonsingular dislocation technique for cracks in strain gradient elasticity. J. Mech. Behav. Mater. 23, 47–58 (2014)
26.
go back to reference Mousavi, S.M., Niiranen, J., Niemi, A.H.: Differential cubature method for static analysis of Kirchhoff micro-plates. Under review (2014) Mousavi, S.M., Niiranen, J., Niemi, A.H.: Differential cubature method for static analysis of Kirchhoff micro-plates. Under review (2014)
27.
go back to reference Mousavi, S.M., Paavola, J., Reddy, J.N.: Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity. Meccanica. doi:10.1007/s11012-015-0105-4 (2014) Mousavi, S.M., Paavola, J., Reddy, J.N.: Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity. Meccanica. doi:10.​1007/​s11012-015-0105-4 (2014)
28.
go back to reference Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)MATHCrossRef Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)MATHCrossRef
29.
go back to reference Papargyri-Beskou, S., Polyzos, D., Beskos, D.E.: Dynamic analysis of gradient elastic flexural beams. Struct. Eng. Mech. 15, 705–716 (2003)CrossRef Papargyri-Beskou, S., Polyzos, D., Beskos, D.E.: Dynamic analysis of gradient elastic flexural beams. Struct. Eng. Mech. 15, 705–716 (2003)CrossRef
30.
31.
go back to reference Polizzotto, C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49, 2121–2137 (2012)CrossRef Polizzotto, C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49, 2121–2137 (2012)CrossRef
32.
go back to reference Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia—part I: constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50, 3749–3765 (2013)CrossRef Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia—part I: constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50, 3749–3765 (2013)CrossRef
33.
go back to reference Rajabi, F., Ramezani, S.: A nonlinear microbeam model based on strain gradient elasticity theory with surface energy. Arch. Appl. Mech. 82, 363–376 (2012)MATHCrossRef Rajabi, F., Ramezani, S.: A nonlinear microbeam model based on strain gradient elasticity theory with surface energy. Arch. Appl. Mech. 82, 363–376 (2012)MATHCrossRef
34.
go back to reference Ramezani, S.: A microscale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Nonlinear Mech. 47, 863–873 (2012)CrossRef Ramezani, S.: A microscale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Nonlinear Mech. 47, 863–873 (2012)CrossRef
35.
go back to reference Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)MATHCrossRef Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)MATHCrossRef
36.
go back to reference Romanoff, J., Reddy, J.N.: Experimental validation of the modified couple stress Timoshenko beam theory for web-core sandwich panels. Compos. Struct. 111, 130–137 (2014)CrossRef Romanoff, J., Reddy, J.N.: Experimental validation of the modified couple stress Timoshenko beam theory for web-core sandwich panels. Compos. Struct. 111, 130–137 (2014)CrossRef
37.
go back to reference Sahmani, S., Bahrami, M., Ansari, R.: Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Compos. Struct. 110, 219–230 (2014)CrossRef Sahmani, S., Bahrami, M., Ansari, R.: Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Compos. Struct. 110, 219–230 (2014)CrossRef
38.
go back to reference Wang, B., Liu, M., Zhao, J., Zhou, S.: A size-dependent Reddy–Levinson beam model based on a strain gradient elasticity theory. Meccanica 49, 1427–1441 (2014)MATHMathSciNetCrossRef Wang, B., Liu, M., Zhao, J., Zhou, S.: A size-dependent Reddy–Levinson beam model based on a strain gradient elasticity theory. Meccanica 49, 1427–1441 (2014)MATHMathSciNetCrossRef
39.
go back to reference Wang, C.M., Reddy, J.N., Lee, K.H.: Shear deformable beams and plates. Elsevier, Amsterdam (2000)MATH Wang, C.M., Reddy, J.N., Lee, K.H.: Shear deformable beams and plates. Elsevier, Amsterdam (2000)MATH
40.
go back to reference Wang, B., Zhao, J., Zhou, S.: A microscale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solid 29, 591–599 (2010)CrossRef Wang, B., Zhao, J., Zhou, S.: A microscale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solid 29, 591–599 (2010)CrossRef
41.
go back to reference Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory. Compos. Struct. 106, 374–392 (2013)CrossRef Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory. Compos. Struct. 106, 374–392 (2013)CrossRef
Metadata
Title
Strain and velocity gradient theory for higher-order shear deformable beams
Authors
Saba Tahaei Yaghoubi
S. Mahmoud Mousavi
Juha Paavola
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 7/2015
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-015-0997-4

Other articles of this Issue 7/2015

Archive of Applied Mechanics 7/2015 Go to the issue

Premium Partners