Skip to main content
Top
Published in: Journal of Materials Science 24/2020

15-05-2020 | Computation & theory

Strain engineering the behaviors of small molecules over defective MoS2 monolayers in the 2H and 1T′ phases

Authors: Yaoyao Linghu, Chao Wu

Published in: Journal of Materials Science | Issue 24/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of strain on the behaviors of gas molecules over surface is always limited by the relative weak gas adsorption, the small range of elastic strain of adsorbents and the uniform response of surface sites. However, the latter two factors may be overcome in two-dimensional (2D) materials with defects. In this work, we employ first-principles calculations to investigate the behavior of a series of common gas molecules (CO, CO2, NH3, SO2, NO, NO2 and O2) on defective (S vacancies and non-metal C/N/O doped) MoS2 monolayers in both the 2H and 1T′ phases under biaxial strain (± 5%). When defects are introduced, strain can cause the gas molecules around the defects to physically/chemically adsorb, desorb, dissociate or even react with dopant. Meanwhile, the mechanical energy consumed to generate strain can be effectively transferred to change the energy of adsorption/desorption/reaction of adsorbates with an efficiency of at least 15% (if only adsorption strength is altered) up to 200% (if reaction is triggered). Subsequently, a number of interesting phenomena can be observed. For example, the doping-and-undoping cycle (e.g., the C doping of 2H-MoS2 and N doping of 1T′-MoS2 monolayers) can be dynamically controlled by pumping relevant gases and applying proper strain. Reversible adsorption and desorption of NH3 on defective MoS2 monolayers in both phases can be achieved within ± 3% strain. NO or NO2 and CO can be converted into non-toxic N2O and CO2 over the N-doped (3% strain) and O-doped (− 3% strain) 1T′-MoS2 monolayers. In essence, defective 2D materials can serve as ideal multi-purpose platforms for strain engineering the behaviors of adsorbates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6):064120CrossRef Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6):064120CrossRef
2.
go back to reference Wang L, Zeng Z, Gao W, Maxson T, Raciti D, Giroux M, Pan X, Wang C, Greeley J (2019) Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363(6429):870–874CrossRef Wang L, Zeng Z, Gao W, Maxson T, Raciti D, Giroux M, Pan X, Wang C, Greeley J (2019) Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363(6429):870–874CrossRef
3.
go back to reference Tang Q (2018) Tuning the phase stability of Mo-based TMD monolayers through coupled vacancy defects and lattice strain. J Mater Chem C 6(35):9561–9568CrossRef Tang Q (2018) Tuning the phase stability of Mo-based TMD monolayers through coupled vacancy defects and lattice strain. J Mater Chem C 6(35):9561–9568CrossRef
4.
go back to reference Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5(12):9703–9709CrossRef Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5(12):9703–9709CrossRef
5.
go back to reference Conley HJ, Wang B, Ziegler JI, Haglund RF Jr, Pantelides ST, Bolotin KI (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13(8):3626–3630CrossRef Conley HJ, Wang B, Ziegler JI, Haglund RF Jr, Pantelides ST, Bolotin KI (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13(8):3626–3630CrossRef
6.
go back to reference Hui YY, Liu X, Jie W, Chan NY, Hao J, Hsu YT, Li L, Guo W, Lau SP (2013) Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7(8):7126–7131CrossRef Hui YY, Liu X, Jie W, Chan NY, Hao J, Hsu YT, Li L, Guo W, Lau SP (2013) Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7(8):7126–7131CrossRef
7.
go back to reference Johair P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6):5449–5456CrossRef Johair P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6):5449–5456CrossRef
8.
go back to reference Nguyen CV, Ilyasov VV, Nguyen HV, Nguyen HN (2016) Band gap and electronic properties of molybdenum disulphide under strain engineering: density functional theory calculations. Mol Simul 43(2):86–91CrossRef Nguyen CV, Ilyasov VV, Nguyen HV, Nguyen HN (2016) Band gap and electronic properties of molybdenum disulphide under strain engineering: density functional theory calculations. Mol Simul 43(2):86–91CrossRef
9.
go back to reference Castellanos-Gomez A, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant HS, Steele GA (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13(11):5361–5366CrossRef Castellanos-Gomez A, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant HS, Steele GA (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13(11):5361–5366CrossRef
10.
go back to reference Sahoo MPK, Wang J, Zhang Y, Shimada T, Kitamura T (2016) Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain. J Phys Chem C 120(26):14113–14121CrossRef Sahoo MPK, Wang J, Zhang Y, Shimada T, Kitamura T (2016) Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain. J Phys Chem C 120(26):14113–14121CrossRef
11.
go back to reference Gao G, Sun Q, Du A (2016) Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering. J Phys Chem C 120(30):16761–16766CrossRef Gao G, Sun Q, Du A (2016) Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering. J Phys Chem C 120(30):16761–16766CrossRef
12.
go back to reference Kou L, Du A, Chen C, Frauenheim T (2014) Strain engineering of selective chemical adsorption on monolayer MoS2. Nanoscale 6(10):5156–5161CrossRef Kou L, Du A, Chen C, Frauenheim T (2014) Strain engineering of selective chemical adsorption on monolayer MoS2. Nanoscale 6(10):5156–5161CrossRef
13.
go back to reference Linghu Y, Wu C (2019) 1T′-MoS2, a promising candidate for sensing NOx. J Phys Chem C 123(16):10339–10345CrossRef Linghu Y, Wu C (2019) 1T′-MoS2, a promising candidate for sensing NOx. J Phys Chem C 123(16):10339–10345CrossRef
14.
go back to reference Chen X, Wang G (2016) Tuning the hydrogen evolution activity of MS2 (M = Mo or Nb) monolayers by strain engineering. Phys Chem Chem Phys 18(14):9388–9395CrossRef Chen X, Wang G (2016) Tuning the hydrogen evolution activity of MS2 (M = Mo or Nb) monolayers by strain engineering. Phys Chem Chem Phys 18(14):9388–9395CrossRef
15.
go back to reference Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Norskov JK, Zheng X (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15(3):48–53CrossRef Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Norskov JK, Zheng X (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15(3):48–53CrossRef
16.
go back to reference Li R, Yang L, Xiong T, Wu Y, Cao L, Yuan D, Zhou W (2017) Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J Power Sources 356:133–139CrossRef Li R, Yang L, Xiong T, Wu Y, Cao L, Yuan D, Zhou W (2017) Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J Power Sources 356:133–139CrossRef
17.
go back to reference Guo J, Liu C, Sun Y, Sun J, Zhang W, Si T, Lei H, Liu Q, Zhang X (2018) N-doped MoS2 nanosheets with exposed edges realizing robust electrochemical hydrogen evolution. J Solid State Chem 263:84–87CrossRef Guo J, Liu C, Sun Y, Sun J, Zhang W, Si T, Lei H, Liu Q, Zhang X (2018) N-doped MoS2 nanosheets with exposed edges realizing robust electrochemical hydrogen evolution. J Solid State Chem 263:84–87CrossRef
18.
go back to reference Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888CrossRef Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888CrossRef
19.
go back to reference Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F, Wang X, Wang J, Ni Z (2014) Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6):5738–5745CrossRef Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F, Wang X, Wang J, Ni Z (2014) Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6):5738–5745CrossRef
20.
go back to reference Giannazzo F, Fisichella G, Greco G, Di Franco S, Deretzis I, La Magna A, Bongiorno C, Nicotra G, Spinella C, Scopelliti M, Pignataro B, Agnello S, Roccaforte F (2017) Ambipolar MoS2 transistors by nanoscale tailoring of Schottky barrier using oxygen plasma functionalization. ACS Appl Mater Interfaces 9(27):23164–23174CrossRef Giannazzo F, Fisichella G, Greco G, Di Franco S, Deretzis I, La Magna A, Bongiorno C, Nicotra G, Spinella C, Scopelliti M, Pignataro B, Agnello S, Roccaforte F (2017) Ambipolar MoS2 transistors by nanoscale tailoring of Schottky barrier using oxygen plasma functionalization. ACS Appl Mater Interfaces 9(27):23164–23174CrossRef
21.
go back to reference Xu EZ, Liu HM, Park K, Li Z, Losovyj Y, Starr M, Werbianskyj M, Fertig HA, Zhang SX (2017) p-Type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 9(10):3576–3584CrossRef Xu EZ, Liu HM, Park K, Li Z, Losovyj Y, Starr M, Werbianskyj M, Fertig HA, Zhang SX (2017) p-Type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 9(10):3576–3584CrossRef
22.
go back to reference Komsa HP, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov AV (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys Rev Lett 109(3):035503CrossRef Komsa HP, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov AV (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys Rev Lett 109(3):035503CrossRef
23.
go back to reference Ma D, Tang Y, Yang G, Zeng J, He C, Lu Z (2015) CO catalytic oxidation on iron-embedded monolayer MoS2. Appl Surf Sci 328:71–77CrossRef Ma D, Tang Y, Yang G, Zeng J, He C, Lu Z (2015) CO catalytic oxidation on iron-embedded monolayer MoS2. Appl Surf Sci 328:71–77CrossRef
24.
go back to reference Wang Z, Zhao J, Cai Q, Li F (2017) Computational screening for high-activity MoS2 monolayer-based catalysts for the oxygen reduction reaction via substitutional doping with transition metal. J Mater Chem A 5(20):9842–9851CrossRef Wang Z, Zhao J, Cai Q, Li F (2017) Computational screening for high-activity MoS2 monolayer-based catalysts for the oxygen reduction reaction via substitutional doping with transition metal. J Mater Chem A 5(20):9842–9851CrossRef
25.
go back to reference Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015) Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping. Catal Sci Technol 5(1):246–253CrossRef Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015) Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping. Catal Sci Technol 5(1):246–253CrossRef
26.
go back to reference Zhu J, Zhang H, Tong Y, Zhao L, Zhang Y, Qiu Y, Lin X (2017) First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: structural stability, electronic properties and adsorption of gas molecules. Appl Surf Sci 419:522–530CrossRef Zhu J, Zhang H, Tong Y, Zhao L, Zhang Y, Qiu Y, Lin X (2017) First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: structural stability, electronic properties and adsorption of gas molecules. Appl Surf Sci 419:522–530CrossRef
27.
go back to reference Ma D, Ju W, Li T, Zhang X, He C, Ma B, Tang Y, Lu Z, Yang Z (2016) Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals. Appl Surf Sci 364:181–189CrossRef Ma D, Ju W, Li T, Zhang X, He C, Ma B, Tang Y, Lu Z, Yang Z (2016) Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals. Appl Surf Sci 364:181–189CrossRef
28.
go back to reference Zhao B, Liu LL, Cheng GD, Li T, Qi N, Chen ZQ, Tang Z (2017) Interaction of O2 with monolayer MoS2: effect of doping and hydrogenation. Mater Des 113:1–8CrossRef Zhao B, Liu LL, Cheng GD, Li T, Qi N, Chen ZQ, Tang Z (2017) Interaction of O2 with monolayer MoS2: effect of doping and hydrogenation. Mater Des 113:1–8CrossRef
29.
go back to reference Gao J, Kim YD, Liang L, Idrobo JC, Chow P, Tan J, Li B, Li L, Sumpter BG, Lu TM, Meunier V, Hone J, Koratkar N (2016) Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv Mater 28(44):9735–9743CrossRef Gao J, Kim YD, Liang L, Idrobo JC, Chow P, Tan J, Li B, Li L, Sumpter BG, Lu TM, Meunier V, Hone J, Koratkar N (2016) Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv Mater 28(44):9735–9743CrossRef
30.
go back to reference Li Y, Wang J, Tian X, Ma L, Dai C, Yang C, Zhou Z (2016) Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability. Nanoscale 8(3):1676–1683CrossRef Li Y, Wang J, Tian X, Ma L, Dai C, Yang C, Zhou Z (2016) Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability. Nanoscale 8(3):1676–1683CrossRef
31.
go back to reference Huang H, Feng X, Du C, Song W (2015) High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity. Chem Commun 51(37):7903–7906CrossRef Huang H, Feng X, Du C, Song W (2015) High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity. Chem Commun 51(37):7903–7906CrossRef
32.
go back to reference Abbas HG, Debela TT, Hussain S, Hussain I (2018) Inorganic molecule (O2, NO) adsorption on nitrogen- and phosphorus-doped MoS2 monolayer using first principle calculations. RSC Adv 8(67):38656–38666CrossRef Abbas HG, Debela TT, Hussain S, Hussain I (2018) Inorganic molecule (O2, NO) adsorption on nitrogen- and phosphorus-doped MoS2 monolayer using first principle calculations. RSC Adv 8(67):38656–38666CrossRef
33.
go back to reference Ouma CNM, Singh S, Obodo KO, Amolo GO, Romero AH (2017) Controlling the magnetic and optical responses of a MoS2 monolayer by lanthanide substitutional doping: a first-principles study. Phys Chem Chem Phys 19(37):25555–25563CrossRef Ouma CNM, Singh S, Obodo KO, Amolo GO, Romero AH (2017) Controlling the magnetic and optical responses of a MoS2 monolayer by lanthanide substitutional doping: a first-principles study. Phys Chem Chem Phys 19(37):25555–25563CrossRef
34.
go back to reference Yang Y-Q, Zhao C-X, Bai S-Y, Wang C-P, Niu C-Y (2019) Activating MoS2 basal planes for hydrogen evolution through the As doping and strain. Phys Lett A 383(24):2997–3000CrossRef Yang Y-Q, Zhao C-X, Bai S-Y, Wang C-P, Niu C-Y (2019) Activating MoS2 basal planes for hydrogen evolution through the As doping and strain. Phys Lett A 383(24):2997–3000CrossRef
35.
go back to reference Yue Q, Chang S, Qin S, Li J (2013) Functionalization of monolayer MoS2 by substitutional doping: a first-principles study. Phys Lett A 377(19–20):1362–1367CrossRef Yue Q, Chang S, Qin S, Li J (2013) Functionalization of monolayer MoS2 by substitutional doping: a first-principles study. Phys Lett A 377(19–20):1362–1367CrossRef
36.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
37.
go back to reference Kresse G, Furthmüller JF (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef Kresse G, Furthmüller JF (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef
38.
go back to reference Linghu Y, Li N, Du Y, Wu C (2019) Ligand induced structure and property changes of 1T-MoS2. Phys Chem Chem Phys 21(18):9391–9398CrossRef Linghu Y, Li N, Du Y, Wu C (2019) Ligand induced structure and property changes of 1T-MoS2. Phys Chem Chem Phys 21(18):9391–9398CrossRef
39.
go back to reference Kuc A, Zibouche N, Heine T (2011) Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B 83(24):245213CrossRef Kuc A, Zibouche N, Heine T (2011) Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B 83(24):245213CrossRef
40.
go back to reference Ataca C, Ciraci S (2011) Functionalization of single-layer MoS2 honeycomb structures. J Phys Chem C 115(27):13303–13311CrossRef Ataca C, Ciraci S (2011) Functionalization of single-layer MoS2 honeycomb structures. J Phys Chem C 115(27):13303–13311CrossRef
41.
go back to reference Blőchl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter 50(24):17953–17979CrossRef Blőchl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter 50(24):17953–17979CrossRef
42.
go back to reference Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132(15):154104CrossRef Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132(15):154104CrossRef
43.
go back to reference Zhang C, Jiao Y, Ma F, Kasi Matta S, Bottle S, Du A (2018) Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors. Beilstein J. Nanotechnol 9:1641–1646CrossRef Zhang C, Jiao Y, Ma F, Kasi Matta S, Bottle S, Du A (2018) Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors. Beilstein J. Nanotechnol 9:1641–1646CrossRef
44.
go back to reference González C, Biel B, Dappe YJ (2017) Adsorption of small inorganic molecules on a defective MoS2 monolayer. Phys Chem Chem Phys 19(14):9485–9499CrossRef González C, Biel B, Dappe YJ (2017) Adsorption of small inorganic molecules on a defective MoS2 monolayer. Phys Chem Chem Phys 19(14):9485–9499CrossRef
45.
go back to reference Li F, Shi C (2018) NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory. Appl Surf Sci 434:294–306CrossRef Li F, Shi C (2018) NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory. Appl Surf Sci 434:294–306CrossRef
46.
go back to reference Li H, Huang M, Cao G (2016) Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study. Phys Chem Chem Phys 18(22):15110–15117CrossRef Li H, Huang M, Cao G (2016) Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study. Phys Chem Chem Phys 18(22):15110–15117CrossRef
47.
go back to reference Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005CrossRef Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005CrossRef
48.
go back to reference Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J, Zhang Z (2015) Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun 6:6293CrossRef Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J, Zhang Z (2015) Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun 6:6293CrossRef
49.
go back to reference Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRef
50.
go back to reference Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904CrossRef Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904CrossRef
51.
go back to reference Yu XF, Li YC, Cheng JB, Liu ZB, Li QZ, Li WZ, Yang X, Xiao B (2015) Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces 7(24):13707–13713CrossRef Yu XF, Li YC, Cheng JB, Liu ZB, Li QZ, Li WZ, Yang X, Xiao B (2015) Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces 7(24):13707–13713CrossRef
52.
go back to reference Ma S, Yuan D, Jiao Z, Wang T, Dai X (2017) Monolayer Sc2CO2: a promising candidate as a SO2 gas sensor or capturer. J Phys Chem C 121(43):24077–24084CrossRef Ma S, Yuan D, Jiao Z, Wang T, Dai X (2017) Monolayer Sc2CO2: a promising candidate as a SO2 gas sensor or capturer. J Phys Chem C 121(43):24077–24084CrossRef
53.
go back to reference Pizzochero M, Yazyev OV (2017) Point defects in the 1T′ and 2H phases of single-layer MoS2: a comparative first-principles study. Phys Rev B 96(24):245402CrossRef Pizzochero M, Yazyev OV (2017) Point defects in the 1T′ and 2H phases of single-layer MoS2: a comparative first-principles study. Phys Rev B 96(24):245402CrossRef
54.
go back to reference Le D, Rawal TB, Rahman TS (2014) Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J Phys Chem C 118(10):5346–5351CrossRef Le D, Rawal TB, Rahman TS (2014) Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J Phys Chem C 118(10):5346–5351CrossRef
55.
go back to reference Tsai C, Li H, Park S, Park J, Han HS, Nørskov JK, Zheng X, Abild-Pedersen F (2017) Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun 8:15113CrossRef Tsai C, Li H, Park S, Park J, Han HS, Nørskov JK, Zheng X, Abild-Pedersen F (2017) Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun 8:15113CrossRef
56.
go back to reference Okada M (2010) Surface chemical reactions induced by well-controlled molecular beams: translational energy and molecular orientation control. J Phys: Condens Matter 22(26):263003 Okada M (2010) Surface chemical reactions induced by well-controlled molecular beams: translational energy and molecular orientation control. J Phys: Condens Matter 22(26):263003
57.
go back to reference Guo H, Zhang W, Lu N, Zhuo Z, Zeng XC, Wu X, Yang J (2015) CO2 capture on h-BN sheet with high selectivity controlled by external electric field. J Phys Chem C 119(12):6912–6917CrossRef Guo H, Zhang W, Lu N, Zhuo Z, Zeng XC, Wu X, Yang J (2015) CO2 capture on h-BN sheet with high selectivity controlled by external electric field. J Phys Chem C 119(12):6912–6917CrossRef
58.
go back to reference Luo H, Cao Y, Zhou J, Feng J, Cao J, Guo H (2016) Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study. Chem Phys Lett 643:27–33CrossRef Luo H, Cao Y, Zhou J, Feng J, Cao J, Guo H (2016) Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study. Chem Phys Lett 643:27–33CrossRef
59.
go back to reference Ma D, Wang Q, Li T, He C, Ma B, Tang Y, Lu Z, Yang Z (2016) Repairing sulfur vacancies in the MoS2 monolayer by using CO, NO and NO2 molecules. J Mater Chem C 4(29):7093–7101CrossRef Ma D, Wang Q, Li T, He C, Ma B, Tang Y, Lu Z, Yang Z (2016) Repairing sulfur vacancies in the MoS2 monolayer by using CO, NO and NO2 molecules. J Mater Chem C 4(29):7093–7101CrossRef
Metadata
Title
Strain engineering the behaviors of small molecules over defective MoS2 monolayers in the 2H and 1T′ phases
Authors
Yaoyao Linghu
Chao Wu
Publication date
15-05-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 24/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04803-3

Other articles of this Issue 24/2020

Journal of Materials Science 24/2020 Go to the issue

Premium Partners