Skip to main content
Top
Published in: Acta Mechanica Sinica 4/2015

01-08-2015 | Research paper

Strain gradient plasticity: energetic or dissipative?

Authors: N. A. Fleck, J. R. Willis

Published in: Acta Mechanica Sinica | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For an infinite slab of strain gradient sensitive material subjected to plane-strain tensile loading, computation established and analysis confirmed that passivation of the lateral boundaries at some stage of loading inhibits plastic deformation upon further loading. This result is not surprising in itself except that, remarkably, if the gradient terms contribute to the dissipation, the plastic deformation is switched off completely and only resumes at a clearly defined higher load, corresponding to a total strain \(\varepsilon _c\), say. The analysis presented in this paper confirms the delay of plastic deformation following passivation and determines the exact manner in which the plastic flow resumes. The plastic strain rate is continuous at the exact point \(\varepsilon _c\) of resumption of plastic flow and, for the first small increment \(\Delta \varepsilon =\varepsilon -\varepsilon _c\) in the imposed total strain, the corresponding increment in plastic strain, \(\Delta \varepsilon ^\mathrm{p}\), is proportional to \((\Delta \varepsilon )^2\). The constant A in the relation \(\Delta \varepsilon ^\mathrm{p}(0) = A(\Delta \varepsilon )^2\), where \(\Delta \varepsilon ^\mathrm{p}(0)\) denotes the plastic strain increment at the centre of the slab, has been determined explicitly; it depends on the hardening modulus of the material. The presence of energetic gradient terms has no effect on the value of \(\varepsilon _c\) unless the dissipative terms are absent, in which case passivation reduces the rate of plastic deformation but introduces no delay. This qualitative effect of dissipative gradient terms opens the possibility of experimental discrimination of their presence or absence. The analysis employs an incremental variational formulation that is likely to find use in other problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In Refs. [14, 15], the term “recoverable” was introduced in place of “energetic”, and “non-recoverable” was used in place of “dissipative”. Here we employ the (so far) more widely used terminology.
 
Literature
1.
go back to reference Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)CrossRef Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)CrossRef
2.
go back to reference Ashby, M.F.: The deformation of plastically non-homogeneous alloys. Philos. Mag. 21, 399–424 (1970) Ashby, M.F.: The deformation of plastically non-homogeneous alloys. Philos. Mag. 21, 399–424 (1970)
3.
go back to reference Groma, I.: Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations. Phys. Rev. B 56, 5807–5813 (1997)CrossRef Groma, I.: Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations. Phys. Rev. B 56, 5807–5813 (1997)CrossRef
4.
go back to reference Evans, A.G., Hutchinson, J.W.: A critical assessment of strain gradient plasticity. Acta Mater. 57, 1675–1688 (2009)CrossRef Evans, A.G., Hutchinson, J.W.: A critical assessment of strain gradient plasticity. Acta Mater. 57, 1675–1688 (2009)CrossRef
5.
go back to reference Fleck, N.A., Muller, G.N., Ashby, M.F., et al.: Strain gradient plasticity: theory and experiment. Acta Metall. et Mater. 42, 475–487 (1994) Fleck, N.A., Muller, G.N., Ashby, M.F., et al.: Strain gradient plasticity: theory and experiment. Acta Metall. et Mater. 42, 475–487 (1994)
6.
go back to reference Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)CrossRef Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)CrossRef
8.
go back to reference Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)MATHMathSciNetCrossRef Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)MATHMathSciNetCrossRef
9.
go back to reference Van der Giessen, E., Needleman, A.: Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689–735 (1995)CrossRef Van der Giessen, E., Needleman, A.: Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689–735 (1995)CrossRef
10.
go back to reference Shu, J.Y., Fleck, N.A., van der Giessen, E., et al.: Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49, 1361–1395 (2001) Shu, J.Y., Fleck, N.A., van der Giessen, E., et al.: Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49, 1361–1395 (2001)
11.
go back to reference Fleck, N.A., Willis, J.R.: A mathematical basis for strain gradient plasticity. Part 1: scalar plastic multiplier. J. Mech. Phys. Solids 57, 161–177 (2009)MathSciNetCrossRef Fleck, N.A., Willis, J.R.: A mathematical basis for strain gradient plasticity. Part 1: scalar plastic multiplier. J. Mech. Phys. Solids 57, 161–177 (2009)MathSciNetCrossRef
12.
go back to reference Motz, C., Schoeberl, T., Pippan, R.: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53, 4269–4279 (2005). (2005)MATHCrossRef Motz, C., Schoeberl, T., Pippan, R.: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53, 4269–4279 (2005). (2005)MATHCrossRef
13.
go back to reference Kiener, D., Motz, C., Grosinger, W., et al.: Cyclic response of copper single crystal micro-beams. Scr. Mater. 63, 500–503 (2010) Kiener, D., Motz, C., Grosinger, W., et al.: Cyclic response of copper single crystal micro-beams. Scr. Mater. 63, 500–503 (2010)
14.
go back to reference Fleck, N.A., Hutchinson, J.W., Willis, J.R.: Strain gradient plasticity under non-proportional loading. Proc. R. Soc. A 470 (2014) Fleck, N.A., Hutchinson, J.W., Willis, J.R.: Strain gradient plasticity under non-proportional loading. Proc. R. Soc. A 470 (2014)
15.
go back to reference Fleck, N.A., Hutchinson, J.W., Willis, J.R.: Guidelines for constructing strain gradient plasticity theories. ASME J. Appl. Mech. (2015). doi:10.1115/1.4030323 Fleck, N.A., Hutchinson, J.W., Willis, J.R.: Guidelines for constructing strain gradient plasticity theories. ASME J. Appl. Mech. (2015). doi:10.​1115/​1.​4030323
16.
go back to reference Fleck, N.A., Willis, J.R.: A mathematical basis for strain gradient plasticity. Part 2: tensorial plastic multiplier. J. Mech. Phys. Solids 57, 1045–1057 (2009)MathSciNetCrossRef Fleck, N.A., Willis, J.R.: A mathematical basis for strain gradient plasticity. Part 2: tensorial plastic multiplier. J. Mech. Phys. Solids 57, 1045–1057 (2009)MathSciNetCrossRef
17.
18.
go back to reference Bittencourt, E., Needleman, A., Gurtin, M.E., et al.: A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281–310 (2003) Bittencourt, E., Needleman, A., Gurtin, M.E., et al.: A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281–310 (2003)
19.
go back to reference Bardella, L., Panteghini, A.: Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467–492 (2015)MathSciNetCrossRef Bardella, L., Panteghini, A.: Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467–492 (2015)MathSciNetCrossRef
Metadata
Title
Strain gradient plasticity: energetic or dissipative?
Authors
N. A. Fleck
J. R. Willis
Publication date
01-08-2015
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 4/2015
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0468-8

Other articles of this Issue 4/2015

Acta Mechanica Sinica 4/2015 Go to the issue

Premium Partners