Skip to main content
Top
Published in: Flow, Turbulence and Combustion 1/2018

11-01-2018

Strain, Rotation and Curvature of Non-material Propagating Iso-scalar Surfaces in Homogeneous Turbulence

Authors: Cesar Dopazo, Jesus Martin, Luis Cifuentes, Juan Hierro

Published in: Flow, Turbulence and Combustion | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research aims at gaining some physical insight into the problem of scalar mixing, following the time evolution of propagating iso-surfaces, Y (x, t) = constant, where Y (x, t) stands for any scalar field (e.g., species mass fraction or temperature). First, a rigorous kinematic analysis of non-material line, surface and volume elements, related to propagating iso-scalar surfaces, is presented; this formalism is valid for both constant and variable density flows. Time rates of change of the normal distance and volume between two adjacent iso-surfaces and of area elements, rotation rates of lines and surface elements and an evolution equation for the local mean curvature are obtained. Line and area stretch rates, which encompass additive contributions from the flow and the displacement speed (due to diffusion and reaction), are identified as total strain rates, normal and tangential to the iso-surfaces. Volumetric dilatation rates, addition of line plus area stretch rates, include the mass entrainment rate per unit mass into the non-material volume. Flow and added vorticities, the latter due to gradients of the displacement speed, yield the total vorticity, which provides the real angular velocity of lines and surface elements. A 5123 DNS database for the mixing of inert and reactive scalars in a box of forced statistically stationary and homogeneous turbulence of a constant-density fluid is then examined. A strongly segregated scalar field is prescribed as initial condition. A one-step reaction rate with a characteristic chemical time one order of magnitude greater than the Kolmogorov time micro-scale is used. Data are analyzed at 1.051 large-eddy turnover times after initialization of velocity and scalar fields. Mean negative normal (contractive) and positive tangential (stretching) flow strain rates occur over all mass fractions and scalar-gradient magnitudes. However, means of the total normal strain rate, conditional upon mass fraction, scalar-gradient and mean curvature, are positive everywhere and tend to destroy scalar-gradients for small times. Negative conditioned mean total tangential strain rates (area stretch factor) contract local areas, except for large values of scalar-gradients. Conditional averages of total and added enstrophies are almost identical, which implies a negligible contribution of the flow vorticity to the observed rotation of non-material line and surface elements. The added vorticity is exactly tangential to the iso-surfaces, whereas the flow and total ones are predominantly tangential. Flow sources/sinks of the mean curvature transport equation are much smaller than the added contributions; for this particular DNS database, the local mean curvature development is self-induced by spatial changes of the displacement speed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Girimaji, S.S., Pope, S.B.: Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234, 247–277 (1992)CrossRefMATH Girimaji, S.S., Pope, S.B.: Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234, 247–277 (1992)CrossRefMATH
3.
go back to reference Yoda, M., Hesselink, L., Mungal, M.G.: Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-schmidt-number jet. J. Fluid Mech. 279, 313–350 (1994)CrossRef Yoda, M., Hesselink, L., Mungal, M.G.: Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-schmidt-number jet. J. Fluid Mech. 279, 313–350 (1994)CrossRef
4.
go back to reference Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765–777 (1990)MathSciNetCrossRef Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765–777 (1990)MathSciNetCrossRef
5.
6.
go back to reference Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. Phys. Rev. E 76, 056316 (2007)CrossRef Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. Phys. Rev. E 76, 056316 (2007)CrossRef
7.
8.
go back to reference Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid.i. general discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)MathSciNetCrossRefMATH Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid.i. general discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)MathSciNetCrossRefMATH
9.
go back to reference Gibson, C.H.: Fine structure of scalar fields mixed by turbulence. i. zero gradient points and minimal gradient surfaces. Phys. Fluids 11, 2305–2315 (1968)CrossRefMATH Gibson, C.H.: Fine structure of scalar fields mixed by turbulence. i. zero gradient points and minimal gradient surfaces. Phys. Fluids 11, 2305–2315 (1968)CrossRefMATH
11.
go back to reference Corrsin, S.: Random geometric problems suggested by turbulence, in statistical models and turbulence. Lect. Notes Phys., Springer-Verlag 12, 300–316 (1972)CrossRefMATH Corrsin, S.: Random geometric problems suggested by turbulence, in statistical models and turbulence. Lect. Notes Phys., Springer-Verlag 12, 300–316 (1972)CrossRefMATH
12.
14.
15.
go back to reference Moffat, H.K.: In: Lesieur, M., Yaglom, A., Davies, F. (eds.) The Topology of Turbulence, in New Trends in Turbulence, pp. 319–340. Springer, Berlin (2001) Moffat, H.K.: In: Lesieur, M., Yaglom, A., Davies, F. (eds.) The Topology of Turbulence, in New Trends in Turbulence, pp. 319–340. Springer, Berlin (2001)
16.
go back to reference Moffat, H.K.: In: Kambe, T. et al. (eds.) The Topology of Scalar Fields in 2D and 3D Turbulence, in Iutam Symposium on Geometry and Statistics of Turbulence, pp. 13–22. Kluwer Academic Publishers, Dordrecht (2001) Moffat, H.K.: In: Kambe, T. et al. (eds.) The Topology of Scalar Fields in 2D and 3D Turbulence, in Iutam Symposium on Geometry and Statistics of Turbulence, pp. 13–22. Kluwer Academic Publishers, Dordrecht (2001)
17.
go back to reference Pelcé, P.: Dynamics of Curved Fronts. Academic Press Inc., Cambridge (1988) Pelcé, P.: Dynamics of Curved Fronts. Academic Press Inc., Cambridge (1988)
18.
go back to reference Candel, S.M., Poinsot, T.J.: Flame stretch and the balance equation for the flame area. Combust. Sci Flame Technol. 70, 1–15 (1990)CrossRef Candel, S.M., Poinsot, T.J.: Flame stretch and the balance equation for the flame area. Combust. Sci Flame Technol. 70, 1–15 (1990)CrossRef
19.
go back to reference Chung, S.H., Law, C.K.: An invariant derivation of flame stretch. Combust. Flame 55, 123–125 (1984)CrossRef Chung, S.H., Law, C.K.: An invariant derivation of flame stretch. Combust. Flame 55, 123–125 (1984)CrossRef
20.
go back to reference Vervisch, L., Bidaux, E., Bray, K.N.C., Kollmann, W.: Surface density function in premixed turbulent combustion modeling. similarities between probability density function and flame surface approaches. Phys. Fluids 7, 2496–2503 (1995)CrossRefMATH Vervisch, L., Bidaux, E., Bray, K.N.C., Kollmann, W.: Surface density function in premixed turbulent combustion modeling. similarities between probability density function and flame surface approaches. Phys. Fluids 7, 2496–2503 (1995)CrossRefMATH
21.
go back to reference Kollmann, W., Chen, J.H.s: Pocket formation and the flame surface density equation. Proc Pocket Combust. Inst. 27, 927–934 (1998)CrossRef Kollmann, W., Chen, J.H.s: Pocket formation and the flame surface density equation. Proc Pocket Combust. Inst. 27, 927–934 (1998)CrossRef
22.
go back to reference Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., Law, C.K.: Structure of a spatially developing turbulent lean methane-air bunsen flame. Proc. Combust. Inst. 31, 1291–1298 (2007)CrossRef Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., Law, C.K.: Structure of a spatially developing turbulent lean methane-air bunsen flame. Proc. Combust. Inst. 31, 1291–1298 (2007)CrossRef
23.
go back to reference Echekki, T., Chen, J.H.: Analysis of the contributions of curvature to premixed flame propagation. Combust. Flame 118, 308–311 (1999)CrossRef Echekki, T., Chen, J.H.: Analysis of the contributions of curvature to premixed flame propagation. Combust. Flame 118, 308–311 (1999)CrossRef
24.
go back to reference Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in inlet-outlet configuration. Combust. Flame 137, 129–147 (2004)CrossRef Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in inlet-outlet configuration. Combust. Flame 137, 129–147 (2004)CrossRef
25.
go back to reference Chakraborty, N., Cant, S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105 (2004)CrossRefMATH Chakraborty, N., Cant, S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105 (2004)CrossRefMATH
26.
go back to reference Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids 19, 105109 (2007)CrossRefMATH Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids 19, 105109 (2007)CrossRefMATH
27.
go back to reference Uranakara, H.A., Chaudhuri, S., Dave, H.L., Arias, P.G., Im, H.G.: A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame 163, 220–240 (2016)CrossRef Uranakara, H.A., Chaudhuri, S., Dave, H.L., Arias, P.G., Im, H.G.: A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame 163, 220–240 (2016)CrossRef
28.
go back to reference Lee, T.-W., North, G.L., Santavicca, D.A.: Curvature and orientation statistics of turbulent premixed flame fronts. Combust. Sci. Technol. 84(1-6), 121–132 (1992)CrossRef Lee, T.-W., North, G.L., Santavicca, D.A.: Curvature and orientation statistics of turbulent premixed flame fronts. Combust. Sci. Technol. 84(1-6), 121–132 (1992)CrossRef
29.
go back to reference Lee, T.-W., North, G.L., Santavicca D.A.: Surface properties of turbulent premixed propane/air flames at various lewis numbers. Combust. Flame 93(4), 445–456 (1993)CrossRef Lee, T.-W., North, G.L., Santavicca D.A.: Surface properties of turbulent premixed propane/air flames at various lewis numbers. Combust. Flame 93(4), 445–456 (1993)CrossRef
30.
go back to reference Shepherd, IG, Ashurst, WmT.: Flame front geometry in premixed turbulent flames. Proc. Combust. Inst. 24(1), 485–491 (1992)CrossRef Shepherd, IG, Ashurst, WmT.: Flame front geometry in premixed turbulent flames. Proc. Combust. Inst. 24(1), 485–491 (1992)CrossRef
31.
go back to reference Ashurst, WmT., Shepherd, I.G.: Flame Front curvature distributions in a turbulent premixed flame zone. Proc. Combust. Inst. 124(1-6), 115–144 (1997) Ashurst, WmT., Shepherd, I.G.: Flame Front curvature distributions in a turbulent premixed flame zone. Proc. Combust. Inst. 124(1-6), 115–144 (1997)
32.
go back to reference Dunstan, T.D., Swaminathan, N., Bray, K.N.C., Kingsbury, N.G.: Flame interactions in turbulent premixed twin v-flames. Combust. Sci. Tech. 185, 134–159 (2013)CrossRef Dunstan, T.D., Swaminathan, N., Bray, K.N.C., Kingsbury, N.G.: Flame interactions in turbulent premixed twin v-flames. Combust. Sci. Tech. 185, 134–159 (2013)CrossRef
33.
go back to reference Dunstan, T.D., Swaminathan, N., Bray, K.N.C., Kingsbury, N.G.: The effects of non-unity Lewis numbers on turbulent premixed flame interactions in a twin v-flame configuration. Combust. Sci. Tech. 185, 874–897 (2013)CrossRef Dunstan, T.D., Swaminathan, N., Bray, K.N.C., Kingsbury, N.G.: The effects of non-unity Lewis numbers on turbulent premixed flame interactions in a twin v-flame configuration. Combust. Sci. Tech. 185, 874–897 (2013)CrossRef
34.
go back to reference Minamoto, Y., Swaminathan, N., Cant, S.R., Leung, T.: Morphological and statistical features of reaction zones in mild and premixed combustion. Combust. Flame 161, 2801–2814 (2014)CrossRef Minamoto, Y., Swaminathan, N., Cant, S.R., Leung, T.: Morphological and statistical features of reaction zones in mild and premixed combustion. Combust. Flame 161, 2801–2814 (2014)CrossRef
35.
go back to reference Griffiths, R.A.C., Chen, J.H., Kolla, H., Cant, R.S., Kollmann, W.: Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35, 1341–1348 (2014)CrossRef Griffiths, R.A.C., Chen, J.H., Kolla, H., Cant, R.S., Kollmann, W.: Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35, 1341–1348 (2014)CrossRef
36.
go back to reference Wang, H., Hawkes, E.R., Chen, J.H.: Turbulence-flame interactions in dns of a laboratory high karlovitz premixed turbulent jet flame. Phys. Fluids 28, 095107 (2016)CrossRef Wang, H., Hawkes, E.R., Chen, J.H.: Turbulence-flame interactions in dns of a laboratory high karlovitz premixed turbulent jet flame. Phys. Fluids 28, 095107 (2016)CrossRef
37.
go back to reference Dopazo, C., Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 162, 1729–1736 (2015)CrossRef Dopazo, C., Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 162, 1729–1736 (2015)CrossRef
38.
go back to reference Dopazo, C., Cifuentes, L., Hierro, J., Martin, J.: Micro-scale mixing in turbulent constant density reacting flows and premixed combustion. Flow Turbul. Combust. 96, 547–571 (2015)CrossRef Dopazo, C., Cifuentes, L., Hierro, J., Martin, J.: Micro-scale mixing in turbulent constant density reacting flows and premixed combustion. Flow Turbul. Combust. 96, 547–571 (2015)CrossRef
39.
go back to reference Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Scalar Fluids 19, 115104 (2007)CrossRefMATH Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Scalar Fluids 19, 115104 (2007)CrossRefMATH
40.
go back to reference Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)CrossRef Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)CrossRef
41.
go back to reference Dopazo, C., Cifuentes, L.: The physics of scalar gradients in turbulent premixed combustion and its relevance to modeling. Combust. Sci. Tech. 188, 1376–1397 (2016)CrossRef Dopazo, C., Cifuentes, L.: The physics of scalar gradients in turbulent premixed combustion and its relevance to modeling. Combust. Sci. Tech. 188, 1376–1397 (2016)CrossRef
42.
go back to reference Weatherburn, C.E.: Differential Geometry of Three Dimensions, vol. 1. Cambridge University Press, Cambridge (2016)MATH Weatherburn, C.E.: Differential Geometry of Three Dimensions, vol. 1. Cambridge University Press, Cambridge (2016)MATH
43.
go back to reference Dopazo, C., Valino, L., Martin, J.: Stochastic Modelling of a Scalar Field and Its Gradient Undergoing Turbulent Mixing and Chemical Reaction. Joint Meeting of the Italian and Spanish Sections of the Combustion Institute (1993) Dopazo, C., Valino, L., Martin, J.: Stochastic Modelling of a Scalar Field and Its Gradient Undergoing Turbulent Mixing and Chemical Reaction. Joint Meeting of the Italian and Spanish Sections of the Combustion Institute (1993)
44.
45.
go back to reference Cerutti, S., Meneveau, C., Knio, O.M.: Spectral and hyper eddy viscosity in high-reynolds-number turbulence. J. Fluid Mech. 421, 307–338 (2000)MathSciNetCrossRefMATH Cerutti, S., Meneveau, C., Knio, O.M.: Spectral and hyper eddy viscosity in high-reynolds-number turbulence. J. Fluid Mech. 421, 307–338 (2000)MathSciNetCrossRefMATH
46.
go back to reference Alvelius, K: Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11(7), 1880–1889 (1999)CrossRefMATH Alvelius, K: Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11(7), 1880–1889 (1999)CrossRefMATH
47.
go back to reference Eswaran, V., Pope, S.B.: Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506–520 (1988)CrossRef Eswaran, V., Pope, S.B.: Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506–520 (1988)CrossRef
48.
go back to reference Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Comp. Fluids 16, 257–278 (1988)CrossRefMATH Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Comp. Fluids 16, 257–278 (1988)CrossRefMATH
49.
go back to reference Chandra, R., Dagun, L., Kohr, D., Maydan, J., Mcdonald, D., Menon, R.: Parallel Programming in Openmp. Morgan Kaufmann Publishers, Burlington (2001) Chandra, R., Dagun, L., Kohr, D., Maydan, J., Mcdonald, D., Menon, R.: Parallel Programming in Openmp. Morgan Kaufmann Publishers, Burlington (2001)
50.
go back to reference Chapman, B., Jost, G., Van, R.: Usingopenmp: Portable Shared Memory Parallel Programming. The MIT Press Library of Congress Cataloging-in-Publication Data (2008) Chapman, B., Jost, G., Van, R.: Usingopenmp: Portable Shared Memory Parallel Programming. The MIT Press Library of Congress Cataloging-in-Publication Data (2008)
51.
go back to reference Peyret, R.: Spectral methods for incompressible viscous flow. In: Applied Mathematical Sciences, 148 (2000) Peyret, R.: Spectral methods for incompressible viscous flow. In: Applied Mathematical Sciences, 148 (2000)
52.
go back to reference Orszag, S., Patterson, G.: Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 12, 76–79 (1972)CrossRef Orszag, S., Patterson, G.: Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 12, 76–79 (1972)CrossRef
53.
go back to reference Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence. NASA TM, 81315, NASA Ames Research Center, CA (1981) Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence. NASA TM, 81315, NASA Ames Research Center, CA (1981)
54.
go back to reference Ashurst, W., Kerstein, A., Kerr, R., Gibson, C.: Alignment of vorticity and scalar gradient in simulated navier-stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)CrossRef Ashurst, W., Kerstein, A., Kerr, R., Gibson, C.: Alignment of vorticity and scalar gradient in simulated navier-stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)CrossRef
Metadata
Title
Strain, Rotation and Curvature of Non-material Propagating Iso-scalar Surfaces in Homogeneous Turbulence
Authors
Cesar Dopazo
Jesus Martin
Luis Cifuentes
Juan Hierro
Publication date
11-01-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 1/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9888-9

Other articles of this Issue 1/2018

Flow, Turbulence and Combustion 1/2018 Go to the issue

Premium Partners