Skip to main content
Top
Published in: Bulletin of Engineering Geology and the Environment 4/2018

18-07-2017 | Original Article

Strength deterioration of a Shaly sandstone under dry–wet cycles: a case study from the Three Gorges Reservoir in China

Authors: Xinrong Liu, Meihai Jin, Dongliang Li, Liang Zhang

Published in: Bulletin of Engineering Geology and the Environment | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We selected the shaly sandstone at the rock slope of the Three Gorges Reservoir area in China where water level varies (the water level-fluctuating zone) in order to study the effect of dry–wet cycles on strength deterioration and micro-structure changes of shaly sandstone. After n dry–wet cycles (n being the number of cycles, with a value of 0, 1, 5, 10, 15, and 20), the shaly sandstone samples were exposed to a uniaxial compression test, triaxial compression test, and Scanning Electron Microscope observation. The strength deterioration and micro-structural changes of the samples are then analyzed with PFC2D (particle flow code in 2D). We found that as n increases, the micro-structure of the shaly sandstone changes from a well-organized dense structure stage to a porous stage and then to a cracking stage, the particles within the shaly sandstone bear and transfer a larger load, strength deterioration is more obvious, and particles are more prone to yield failure. The dry–wet cycles lower the micro-structure strength of the particles contact network, at the macro level, which is reflected in the strength decrease of shaly sandstone. At peak stress state, the shaly sandstone mainly shows the characteristics of shear failure after dry–wet cycles. With the loading process and n increasing, the cracks propagation process of the shaly sandstone samples can be divided into four stages: the elastic deformation stage, cracks generation and stable cracks growth stage, cracks damage and unstable cracks growth stage, and post-peak failure stage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Baud P, Zhu W, Wong TF (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res 105:16371–16389CrossRef Baud P, Zhu W, Wong TF (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res 105:16371–16389CrossRef
go back to reference Chester FM, Logan JM (1986) Implications for mechanical properties of brittle faults from observations of the punchbowl fault zone, California. Pure Appl Geophys 124:79–126CrossRef Chester FM, Logan JM (1986) Implications for mechanical properties of brittle faults from observations of the punchbowl fault zone, California. Pure Appl Geophys 124:79–126CrossRef
go back to reference Hua W, Dong SM, Li YF, Xu JG, Wang QY (2015) The influence of cyclic wetting and drying on the fracture toughness of sandstone. Int J Rock Mech Min Sci 78:331–335CrossRef Hua W, Dong SM, Li YF, Xu JG, Wang QY (2015) The influence of cyclic wetting and drying on the fracture toughness of sandstone. Int J Rock Mech Min Sci 78:331–335CrossRef
go back to reference Duda M, Renner J (2000) The weakening effect of water on the brittle failure strength of sandstone. Geophys J Int 192:1091–1108CrossRef Duda M, Renner J (2000) The weakening effect of water on the brittle failure strength of sandstone. Geophys J Int 192:1091–1108CrossRef
go back to reference Hall K, Hall A (1996) Weathering by wetting and drying: some experimental results. Earth Surf Process Landf 21:365–376CrossRef Hall K, Hall A (1996) Weathering by wetting and drying: some experimental results. Earth Surf Process Landf 21:365–376CrossRef
go back to reference Hale PA, Shakoor A (2003) A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environ Eng Geosci 9:117–130CrossRef Hale PA, Shakoor A (2003) A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environ Eng Geosci 9:117–130CrossRef
go back to reference Itasca Consulting Group Inc (2004). PFC2D (particle flow code in 2D) theory and background. Minnesota: Itasca Consulting Itasca Consulting Group Inc (2004). PFC2D (particle flow code in 2D) theory and background. Minnesota: Itasca Consulting
go back to reference Jeoungseok Y (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889CrossRef Jeoungseok Y (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889CrossRef
go back to reference Jiang QH, Qi YJ, Wang ZJ, Zhou CB (2013) An extended Nishihara model for the description of three stages of sandstone creep. Geophys J Int 193:841–854CrossRef Jiang QH, Qi YJ, Wang ZJ, Zhou CB (2013) An extended Nishihara model for the description of three stages of sandstone creep. Geophys J Int 193:841–854CrossRef
go back to reference Jiang QH, Zhang ZH, Wei W, Ni X, Zhou CB (2012) Research on triggering mechanism and kinematic process of Qianjiangping landslide. Disaster Adv 5:598–603 Jiang QH, Zhang ZH, Wei W, Ni X, Zhou CB (2012) Research on triggering mechanism and kinematic process of Qianjiangping landslide. Disaster Adv 5:598–603
go back to reference Klein E, Baud P, Reuschle T, Wong TF (2001) Mechanical behavior and failure mode of Bentheim sandstone under triaxial compression. Phys Chem Earth 26:21–25CrossRef Klein E, Baud P, Reuschle T, Wong TF (2001) Mechanical behavior and failure mode of Bentheim sandstone under triaxial compression. Phys Chem Earth 26:21–25CrossRef
go back to reference Li KG, Zheng DP, Huang WH (2013a) Experiment research on shear characteristics of sandstone considering cyclic drying-wetting effect. Disaster Adv s1:83–87 Li KG, Zheng DP, Huang WH (2013a) Experiment research on shear characteristics of sandstone considering cyclic drying-wetting effect. Disaster Adv s1:83–87
go back to reference Li KG, Zheng DP, Huang WH (2013b) Mechanical behavior of sandstone and its neural network simulation of constitutive model considering cyclic drying-wetting effect. Rock Soil Mech 34:168–173 in Chinese Li KG, Zheng DP, Huang WH (2013b) Mechanical behavior of sandstone and its neural network simulation of constitutive model considering cyclic drying-wetting effect. Rock Soil Mech 34:168–173 in Chinese
go back to reference Miihlhaus HB, Vardoulakis I (1988) The thickness of shear bands in granular materials. Geotechnique 38:271–284 Miihlhaus HB, Vardoulakis I (1988) The thickness of shear bands in granular materials. Geotechnique 38:271–284
go back to reference Ozbek A (2014) Investigation of the effects of wetting-drying and freezing-thawing cycles on some physical and mechanical properties of selected ignimbrites. Bull Eng Geol Environ 73:595–609CrossRef Ozbek A (2014) Investigation of the effects of wetting-drying and freezing-thawing cycles on some physical and mechanical properties of selected ignimbrites. Bull Eng Geol Environ 73:595–609CrossRef
go back to reference Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364CrossRef Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364CrossRef
go back to reference Rong HR, Bai HB, Wang ZS (2005) Experimental research on mechanical properties and microstructure change law of red sandstone after different temperatures. Rock Soil Mech 36:463–469 in Chinese Rong HR, Bai HB, Wang ZS (2005) Experimental research on mechanical properties and microstructure change law of red sandstone after different temperatures. Rock Soil Mech 36:463–469 in Chinese
go back to reference Torres-Suareza MC, Alarcon-Guzman A, Moya RD (2014) Effects of loading-unloading and wetting-drying cycles on geomechanical behaviors of mudrocks in the Colombian Andes. J Rock Mech Geotech Eng 6:257–268CrossRef Torres-Suareza MC, Alarcon-Guzman A, Moya RD (2014) Effects of loading-unloading and wetting-drying cycles on geomechanical behaviors of mudrocks in the Colombian Andes. J Rock Mech Geotech Eng 6:257–268CrossRef
go back to reference Wong TF, Baud P (2012) The brittle-ductile transition in rocks: a review. J Struct Geol 44:25–53CrossRef Wong TF, Baud P (2012) The brittle-ductile transition in rocks: a review. J Struct Geol 44:25–53CrossRef
go back to reference Yang SQ, Jing HW, Wang SY (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45:583–606CrossRef Yang SQ, Jing HW, Wang SY (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45:583–606CrossRef
go back to reference Yao HY, Zhang ZH, Zhu CH, Shi YC, Li Y (2010) Experimental study of mechanical properties of sandstone under cyclic drying and wetting. Rock Soil Mech 31:3704–3708 Yao HY, Zhang ZH, Zhu CH, Shi YC, Li Y (2010) Experimental study of mechanical properties of sandstone under cyclic drying and wetting. Rock Soil Mech 31:3704–3708
go back to reference Yao HY, Zhu Y, Wu P (2013) Research on uniaxial compression and tension tests of sandstone subjected to drying-wetting cycle. Disaster Adv 6(S3):388–392 Yao HY, Zhu Y, Wu P (2013) Research on uniaxial compression and tension tests of sandstone subjected to drying-wetting cycle. Disaster Adv 6(S3):388–392
go back to reference Zhang ZH, Jiang QH, Zhou CB, Liu XT (2014) Strength and failure characteristics of Jurassic red-bed sandstone under cyclic wetting-drying conditions. Geophys J Int 198:1034–1044CrossRef Zhang ZH, Jiang QH, Zhou CB, Liu XT (2014) Strength and failure characteristics of Jurassic red-bed sandstone under cyclic wetting-drying conditions. Geophys J Int 198:1034–1044CrossRef
go back to reference Zha ZH, Song EX (2015) Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions. Comput Geotech 68:137–146CrossRef Zha ZH, Song EX (2015) Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions. Comput Geotech 68:137–146CrossRef
Metadata
Title
Strength deterioration of a Shaly sandstone under dry–wet cycles: a case study from the Three Gorges Reservoir in China
Authors
Xinrong Liu
Meihai Jin
Dongliang Li
Liang Zhang
Publication date
18-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Bulletin of Engineering Geology and the Environment / Issue 4/2018
Print ISSN: 1435-9529
Electronic ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-017-1107-3

Other articles of this Issue 4/2018

Bulletin of Engineering Geology and the Environment 4/2018 Go to the issue