Skip to main content
Top
Published in: Journal of Materials Science 9/2019

30-01-2019 | Ceramics

Strengthening of very large crystalline and polycrystalline Nd:YAG rods for high-power laser applications

Authors: Revital Feldman, Steven Jackel, Inon Moshe, Avi Meir, Eyal Lebiush, Zvi Horowitz, Yaakov Lumer, Yehoshua Shimony

Published in: Journal of Materials Science | Issue 9/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multistep thermochemical etching procedure was applied to very large Nd3+:YAG rods to increase their fracture strength. The strengthening procedure combined selection of high-quality material, fine centerless grinding, thermochemical etching, and (after completion of the lapping, polishing and AR coating) an additional hot thermochemical etching, with rod ends protected with poly-tetra-fluoro-ethylene (Teflon) caps. The final cleaning step, not previously reported, is essential in removing fracture causing contaminations on the rod surface. A unique thermal load-to-fracture technique was applied on test rods to measure their fracture strength. The rods were thermally loaded up to fracture by means of optical pumping in a specially designed laser pump chamber. The results thus obtained were analyzed by Weibull distribution statistics appropriate to these tests. The strengthened laser rods of this study sustained a maximum pump power density of \( I_{{\ell_{\hbox{max} } }} \) = 500 W cm−1. This value is higher by a factor of four over untreated rods and also higher than any previously published data for such large rods. High-power diode-pumped laser heads were operated with the strengthened crystalline and polycrystalline Nd:YAG rods, yielded output power of ~ 3 kW, when pumped with 7 kW. Such performance was routinely achieved without any instance of rod fracture. Reliability of the strengthening procedure was further demonstrated by the failure-free operation of an azimuthally polarized high-power master-oscillator power-amplifier system (composed of oscillator, preamplifier, and six power amplifiers), emitting an output power in excess of 10 kW.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Geusic JE, Marcos HM, Van Uitert LG (1964) Laser oscillations in Nd-doped yttrium-aluminum, yttrium-galium and gadolinium garnets. Appl Phys Lett 4(10):182–184CrossRef Geusic JE, Marcos HM, Van Uitert LG (1964) Laser oscillations in Nd-doped yttrium-aluminum, yttrium-galium and gadolinium garnets. Appl Phys Lett 4(10):182–184CrossRef
2.
go back to reference Takada A, Akiyama Y, Takase T, Yuasa H, Ono A (1999) Diode laser-pumped cw Nd:YAG lasers with more than 1 kW output power. In: Fejer MF, Injeyan H, Keller U (eds) Advanced solid-state lasers, OSA technical digest. Optical Society of America, Washington DC, pp 21–23 Takada A, Akiyama Y, Takase T, Yuasa H, Ono A (1999) Diode laser-pumped cw Nd:YAG lasers with more than 1 kW output power. In: Fejer MF, Injeyan H, Keller U (eds) Advanced solid-state lasers, OSA technical digest. Optical Society of America, Washington DC, pp 21–23
3.
go back to reference Golla D, Bode M, Knoke S, Schöne W, Tünnermann A (1996) 62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers. Opt Lett 21(3):210–212CrossRef Golla D, Bode M, Knoke S, Schöne W, Tünnermann A (1996) 62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers. Opt Lett 21(3):210–212CrossRef
4.
go back to reference Paschotta R, Aus der Au J, Keller U (1991) Thermal effects in high-power end pumped laers with elliptical-mode geometry. IEEE J Selected Top Quantum Electron 6(4):636–642CrossRef Paschotta R, Aus der Au J, Keller U (1991) Thermal effects in high-power end pumped laers with elliptical-mode geometry. IEEE J Selected Top Quantum Electron 6(4):636–642CrossRef
5.
go back to reference Schöne W, Knoke S, Schirmer S, Tünnermann A (1997) Diode-pumped cw Nd:YAG lasers with output powers up to 750 W. In: Pollock CR, Bosenberg WR (eds) Advanced solid-state lasers, technical digest. Optical Society of America, Washington DC, pp 241–243 Schöne W, Knoke S, Schirmer S, Tünnermann A (1997) Diode-pumped cw Nd:YAG lasers with output powers up to 750 W. In: Pollock CR, Bosenberg WR (eds) Advanced solid-state lasers, technical digest. Optical Society of America, Washington DC, pp 241–243
6.
go back to reference Koechner W (2006) Solid state laser engineering, 6th edn. Springer Series in Optical Sciences, Berlin, pp 423–487, 102–155 (a Chapter 7, b Chapter 3) Koechner W (2006) Solid state laser engineering, 6th edn. Springer Series in Optical Sciences, Berlin, pp 423–487, 102–155 (a Chapter 7, b Chapter 3)
7.
go back to reference Feldman R, Golan Y, Burshtein Z, Jackel S, Moshe I, Meir A, Lumer Y, Shimony Y (2011) Strengthening of polycrystalline (ceramic) Nd:YAG elements for high power laser applications. Opt Mater 33:95–701CrossRef Feldman R, Golan Y, Burshtein Z, Jackel S, Moshe I, Meir A, Lumer Y, Shimony Y (2011) Strengthening of polycrystalline (ceramic) Nd:YAG elements for high power laser applications. Opt Mater 33:95–701CrossRef
8.
go back to reference Marion JE (1986) Fracture of solid-state laser slabs. J Appl Phys 60(1):69–77CrossRef Marion JE (1986) Fracture of solid-state laser slabs. J Appl Phys 60(1):69–77CrossRef
9.
go back to reference Harris DC (1999) Materials for infrared windows and domes: properties and performances, SPIE. Optical Engineering Press, Bellingham, WA, pp 84–122 (Chapter 3) CrossRef Harris DC (1999) Materials for infrared windows and domes: properties and performances, SPIE. Optical Engineering Press, Bellingham, WA, pp 84–122 (Chapter 3) CrossRef
10.
go back to reference Feldman R, Shimony Y, Lebiush E, Golan Y (2008) Effect of hot acid etching on thermomechanical strength of ground YAG laser elements. J Phys Chem Solids 69(4):839–846CrossRef Feldman R, Shimony Y, Lebiush E, Golan Y (2008) Effect of hot acid etching on thermomechanical strength of ground YAG laser elements. J Phys Chem Solids 69(4):839–846CrossRef
11.
go back to reference Wood RM (2003) Laser-induced damage of optical materials. In: Brown RGW, Pike ER (eds) Series in optics and optoelectronics. Institute of Physics Publishing, Bristol, pp 54–131 Wood RM (2003) Laser-induced damage of optical materials. In: Brown RGW, Pike ER (eds) Series in optics and optoelectronics. Institute of Physics Publishing, Bristol, pp 54–131
12.
go back to reference Bloembergen N (1974) Laser-induced electric breakdown in solids. IEEE J Quantum Electron QE 10:375–386CrossRef Bloembergen N (1974) Laser-induced electric breakdown in solids. IEEE J Quantum Electron QE 10:375–386CrossRef
13.
go back to reference Bloembergen N (1973) Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics. Appl Optics 12(4):661–664CrossRef Bloembergen N (1973) Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics. Appl Optics 12(4):661–664CrossRef
14.
go back to reference Génin FY, Salleo A, Pistor TV, Chase LL (2001) Role of light intensification by cracks in optical breakdown on surfaces. J Opt Soc Am A 18(10):2607–2616CrossRef Génin FY, Salleo A, Pistor TV, Chase LL (2001) Role of light intensification by cracks in optical breakdown on surfaces. J Opt Soc Am A 18(10):2607–2616CrossRef
15.
go back to reference Mann G, Phillipps G (1995) Rough surface absorption of Nd:YAG laser rods. Opt Mater 4:811–814CrossRef Mann G, Phillipps G (1995) Rough surface absorption of Nd:YAG laser rods. Opt Mater 4:811–814CrossRef
16.
go back to reference Marion J (1985) Strengthened solid-state laser materials. Appl Phys Lett 47(7):694–696CrossRef Marion J (1985) Strengthened solid-state laser materials. Appl Phys Lett 47(7):694–696CrossRef
17.
go back to reference Foster JD, Osterink LM (1970) Thermal effects in a Nd:YAG laser. J Appl Phys 41(9):3656–3663CrossRef Foster JD, Osterink LM (1970) Thermal effects in a Nd:YAG laser. J Appl Phys 41(9):3656–3663CrossRef
18.
go back to reference Weber R, Neuenschwander B, Weber HP (1999) Thermal effects in solid-state laser materials. Opt Mater 11:245–254CrossRef Weber R, Neuenschwander B, Weber HP (1999) Thermal effects in solid-state laser materials. Opt Mater 11:245–254CrossRef
19.
go back to reference Koechner W (1970) Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystals. Appl Opt 9(6):1429–1434CrossRef Koechner W (1970) Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystals. Appl Opt 9(6):1429–1434CrossRef
20.
go back to reference Popov EP (1968) Introduction to mechanics of solids. Prentice-Hall Inc, New Jersey, pp 177–218 (Chapter 6) Popov EP (1968) Introduction to mechanics of solids. Prentice-Hall Inc, New Jersey, pp 177–218 (Chapter 6)
21.
go back to reference Byer RL (1985) United State Patent No. 4,555,786, Stanford University Byer RL (1985) United State Patent No. 4,555,786, Stanford University
22.
go back to reference Shafer KE, Eakins DE, Bahr DF, Norton MG, Lynn KG (2003) Strength enhancement of single crystal laser components. J Mater Res 18(11):2537–2539CrossRef Shafer KE, Eakins DE, Bahr DF, Norton MG, Lynn KG (2003) Strength enhancement of single crystal laser components. J Mater Res 18(11):2537–2539CrossRef
23.
go back to reference Gerber M, Graf Th (2001) Optimum parameters to etch Nd:YAG crystals with orthophosphoric acid H3PO4. Optics Lasers Technol 33:449–453CrossRef Gerber M, Graf Th (2001) Optimum parameters to etch Nd:YAG crystals with orthophosphoric acid H3PO4. Optics Lasers Technol 33:449–453CrossRef
24.
go back to reference Koechner W (1973) Rupture, stress, and modulus of elasticity for Nd:YAG crystals. Appl Phys 2(5):279–280CrossRef Koechner W (1973) Rupture, stress, and modulus of elasticity for Nd:YAG crystals. Appl Phys 2(5):279–280CrossRef
25.
go back to reference Lebiush E, Jackel S, Goldring S, Moshe I, Tzuk Y, Meir A (2005) Elimination of spherical aberration in multi-kW Nd:YAG rod pump-chambers by pump-distribution control. In: Quarles GJ, Denman C, Sorokina I (eds) Advanced solid-state photonics. Optical Society of America, Washington DC, p 7 (Paper MB45) Lebiush E, Jackel S, Goldring S, Moshe I, Tzuk Y, Meir A (2005) Elimination of spherical aberration in multi-kW Nd:YAG rod pump-chambers by pump-distribution control. In: Quarles GJ, Denman C, Sorokina I (eds) Advanced solid-state photonics. Optical Society of America, Washington DC, p 7 (Paper MB45)
26.
go back to reference Moshe I, Jackel S, Lumer Y, Meir A, Feldman R, Shimony Y (2010) Use of polycrystalline Nd:YAG rods to achieve pure radially or azimuthally polarized beams from high-average-power lasers. Opt Lett 35(15):2511–2513CrossRef Moshe I, Jackel S, Lumer Y, Meir A, Feldman R, Shimony Y (2010) Use of polycrystalline Nd:YAG rods to achieve pure radially or azimuthally polarized beams from high-average-power lasers. Opt Lett 35(15):2511–2513CrossRef
27.
go back to reference Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297 Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297
28.
go back to reference Brown DC (1997) Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG laser. IEEE J Quant Elec 33(5):861–873CrossRef Brown DC (1997) Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG laser. IEEE J Quant Elec 33(5):861–873CrossRef
29.
go back to reference Chang JJ, Dragon EP, Ebbers CA, Bass IL, Cochran CW (1998) An efficient diode-pumped Nd:YAG laser with 451 W of CW IR and 182 W of pulsed green output. In: Bossenberg WR, Fejer MM (eds) OSA trends in optics and photonics, vol 19. Advanced solid-state lasers. Optical Society of America, Washington DC, pp 300–303 Chang JJ, Dragon EP, Ebbers CA, Bass IL, Cochran CW (1998) An efficient diode-pumped Nd:YAG laser with 451 W of CW IR and 182 W of pulsed green output. In: Bossenberg WR, Fejer MM (eds) OSA trends in optics and photonics, vol 19. Advanced solid-state lasers. Optical Society of America, Washington DC, pp 300–303
30.
go back to reference Burnham RL, Witt G, DiBiase D, Le K, Koechner W (1994) Diode-pumped solid-state lasers with kilowatt average power. In: Bohrer M, Letardi M, Schuoecker T, Weber H (eds) High-power gas and solid state lasers., pp 489–498 (Proceedings, SPIE Vol. 2206) CrossRef Burnham RL, Witt G, DiBiase D, Le K, Koechner W (1994) Diode-pumped solid-state lasers with kilowatt average power. In: Bohrer M, Letardi M, Schuoecker T, Weber H (eds) High-power gas and solid state lasers., pp 489–498 (Proceedings, SPIE Vol. 2206) CrossRef
31.
go back to reference Akiyama AY, Takada A, Takase T, Sasaki M, Yuasa H, Nishida N (2000) Efficient 2-kW diode-pumped cw Nd:YAG single rod laser. In: Injeyan H, Keller U, Marshall C (eds) OSA trends in optics and photonics, vol 34. Advanced solid-state lasers. Optical Society of America, Washington DC, pp 48–51 Akiyama AY, Takada A, Takase T, Sasaki M, Yuasa H, Nishida N (2000) Efficient 2-kW diode-pumped cw Nd:YAG single rod laser. In: Injeyan H, Keller U, Marshall C (eds) OSA trends in optics and photonics, vol 34. Advanced solid-state lasers. Optical Society of America, Washington DC, pp 48–51
32.
go back to reference Moshe I, Jackel S, Lumer Y, Meir A, Feldman R, Shimony Y (2011) Maintaining radial-polarization and beam-quality in multi-kW rod-based lasers through the use of polycrystalline Nd:YAG rods. In: Proceedings of the lasers and electro-optics Europe and 12th European quantum electronics CLEO/Europe-EQEC Conference, Münich, Paper No. CA9.5 Moshe I, Jackel S, Lumer Y, Meir A, Feldman R, Shimony Y (2011) Maintaining radial-polarization and beam-quality in multi-kW rod-based lasers through the use of polycrystalline Nd:YAG rods. In: Proceedings of the lasers and electro-optics Europe and 12th European quantum electronics CLEO/Europe-EQEC Conference, Münich, Paper No. CA9.5
33.
go back to reference Lumer Y, Moshe I, Jackel S, Horowitz Z, Meir A, Feldman R, Shimony Y (2010) Depolarization induced by pump edge effects in high average power laser rods. J Opt Soc Am B 27(1):38–44CrossRef Lumer Y, Moshe I, Jackel S, Horowitz Z, Meir A, Feldman R, Shimony Y (2010) Depolarization induced by pump edge effects in high average power laser rods. J Opt Soc Am B 27(1):38–44CrossRef
34.
go back to reference Neauport J, Lamaignere L, Bercegol H (2005) Polishing-induced contamination of fused silica and laser induced damage density at 351 nm. Opt Express 13(25):10163–10171CrossRef Neauport J, Lamaignere L, Bercegol H (2005) Polishing-induced contamination of fused silica and laser induced damage density at 351 nm. Opt Express 13(25):10163–10171CrossRef
35.
go back to reference Sir George Beilby (1921) Aggregation and flow of solids. MacMillan, London Sir George Beilby (1921) Aggregation and flow of solids. MacMillan, London
Metadata
Title
Strengthening of very large crystalline and polycrystalline Nd:YAG rods for high-power laser applications
Authors
Revital Feldman
Steven Jackel
Inon Moshe
Avi Meir
Eyal Lebiush
Zvi Horowitz
Yaakov Lumer
Yehoshua Shimony
Publication date
30-01-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03340-y

Other articles of this Issue 9/2019

Journal of Materials Science 9/2019 Go to the issue

Premium Partners