Skip to main content
Top
Published in: Quantum Information Processing 8/2023

01-08-2023

Strong photon antibunching effect in a double-cavity optomechanical system with intracavity squeezed light

Authors: M. Amazioug, M. Daoud, S. K. Singh, M. Asjad

Published in: Quantum Information Processing | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study the behaviour of the second-order correlation function in a double-cavity optomechanical system, and a degenerate optical parametric amplifier is placed in each cavity. The first cavity is additionally driven by a weak classical laser field. The occurrence of strong photon antibunching effect in these two coupled cavities is observed. For suitable values of optomechanical coupling strength as well as photon hopping process, the system can exhibit a very strong photon antibunching effect. Our study also shows that the unconventional photon blockade occurs in both coupling, i.e. the weak coupling and the strong coupling regimes as compared to the conventional photon blockade which occurs only in the strong coupling regime. We get a very strong photon antibunching effect under the unconventional photon blockade mechanism than the conventional photon blockade mechanism. Our study can be also used for the generation of single photon in coupled nonlinear optomechanical systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADS Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADS
2.
go back to reference Xiong, H., Si, L.G.: Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron. 58, 1 (2015) Xiong, H., Si, L.G.: Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron. 58, 1 (2015)
3.
go back to reference Amazioug, M., Maroufi, B., Daoud, M.: Using coherent feedback loop for high quantum state transfer in optomechanics. Phys. Lett. A 384, 126705 (2020)MathSciNet Amazioug, M., Maroufi, B., Daoud, M.: Using coherent feedback loop for high quantum state transfer in optomechanics. Phys. Lett. A 384, 126705 (2020)MathSciNet
4.
go back to reference Amazioug, M., Maroufi, B., Daoud, M.: Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Inf. Process. 19, 16 (2020)MathSciNetMATH Amazioug, M., Maroufi, B., Daoud, M.: Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Inf. Process. 19, 16 (2020)MathSciNetMATH
5.
go back to reference Amazioug, M., Maroufi, B., Daoud, M.: Creating mirror–mirror quantum correlations in optomechanics. Eur. Phys. J. D 74, 9 (2020)MATH Amazioug, M., Maroufi, B., Daoud, M.: Creating mirror–mirror quantum correlations in optomechanics. Eur. Phys. J. D 74, 9 (2020)MATH
6.
go back to reference Asjad, M., Tombesi, P., Vitali, D.: Quantum phase gate for optical qubits with cavity quantum optomechanics. Opt. Express 23, 7786 (2015)ADS Asjad, M., Tombesi, P., Vitali, D.: Quantum phase gate for optical qubits with cavity quantum optomechanics. Opt. Express 23, 7786 (2015)ADS
7.
go back to reference Singh, S.K., Peng, J., Asjad, M., Mazaheri, M.: Entanglement and coherence in a hybrid Laguerre–Gaussian rotating cavity optomechanical system with two-level atoms. J. Phys. B 54, 215502 (2021)ADS Singh, S.K., Peng, J., Asjad, M., Mazaheri, M.: Entanglement and coherence in a hybrid Laguerre–Gaussian rotating cavity optomechanical system with two-level atoms. J. Phys. B 54, 215502 (2021)ADS
8.
go back to reference Amazioug, M., Nassik, M., Habiballah, N.: Entanglement, EPR steering and Gaussian geometric discord in a double cavity optomechanical systems. Eur. Phys. J. D 72, 9 (2018)MATH Amazioug, M., Nassik, M., Habiballah, N.: Entanglement, EPR steering and Gaussian geometric discord in a double cavity optomechanical systems. Eur. Phys. J. D 72, 9 (2018)MATH
9.
go back to reference Teklu, B., Byrnes, T., Khan, F.: Cavity-induced mirror–mirror entanglement in a single-atom Raman laser. Phys. Rev. A 97, 023829 (2018)ADS Teklu, B., Byrnes, T., Khan, F.: Cavity-induced mirror–mirror entanglement in a single-atom Raman laser. Phys. Rev. A 97, 023829 (2018)ADS
10.
go back to reference Asjad, M., Shahzad, M.A., Saif, F.: Quantum degenerate Fermi gas entanglement in optomechanics. Eur. Phys. J. D 67, 1 (2013) Asjad, M., Shahzad, M.A., Saif, F.: Quantum degenerate Fermi gas entanglement in optomechanics. Eur. Phys. J. D 67, 1 (2013)
11.
go back to reference Mazaheri, M., Jamasb, S.: Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. Quantum Inf. Process. 19, 1 (2020)MathSciNetMATH Mazaheri, M., Jamasb, S.: Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. Quantum Inf. Process. 19, 1 (2020)MathSciNetMATH
12.
go back to reference Gebremariam, T., Mazaheri, M., Zeng, Y., Li, C.: Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. JOSA B 36, 168 (2019)ADS Gebremariam, T., Mazaheri, M., Zeng, Y., Li, C.: Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. JOSA B 36, 168 (2019)ADS
13.
go back to reference Huang, S., Agarwal, G.S.: Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 95, 023844 (2017)ADS Huang, S., Agarwal, G.S.: Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 95, 023844 (2017)ADS
14.
go back to reference Motazedifard, A., Bemani, F., Naderi, M., Roknizadeh, R., Vitali, D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 18, 073040 (2016)ADS Motazedifard, A., Bemani, F., Naderi, M., Roknizadeh, R., Vitali, D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 18, 073040 (2016)ADS
15.
go back to reference Singh, S.K., Mazaheri, M., Peng, J.-X., Sohail, A., Khalid, M., Asjad, M.: Enhanced weak force sensing based on atom-based coherent quantum noise cancellation in a hybrid cavity optomechanical system. Front. Phys. 11, 1142452 (2023) Singh, S.K., Mazaheri, M., Peng, J.-X., Sohail, A., Khalid, M., Asjad, M.: Enhanced weak force sensing based on atom-based coherent quantum noise cancellation in a hybrid cavity optomechanical system. Front. Phys. 11, 1142452 (2023)
16.
go back to reference Ghobadi, R., Gholizadeh, S., Mazaheri, M.: Weak force measurement in bistable optomechanical system. Int. J. Opt. Photon. 9, 19 (2015) Ghobadi, R., Gholizadeh, S., Mazaheri, M.: Weak force measurement in bistable optomechanical system. Int. J. Opt. Photon. 9, 19 (2015)
17.
go back to reference Gebremariam, T., Zeng, Y.X., Mazaheri, M., Li, C.: Enhancing optomechanical force sensing via precooling and quantum noise cancellation. Sci. China Phys. Mech. Astron. 63, 1 (2020) Gebremariam, T., Zeng, Y.X., Mazaheri, M., Li, C.: Enhancing optomechanical force sensing via precooling and quantum noise cancellation. Sci. China Phys. Mech. Astron. 63, 1 (2020)
18.
go back to reference Collett, M.J., Walls, D.F.: Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887 (1985)ADS Collett, M.J., Walls, D.F.: Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887 (1985)ADS
19.
go back to reference Kundu, A., Singh, S.K.: Heisenberg–Langevin formalism for squeezing dynamics of linear hybrid optomechanical system. Int. J. Theor. Phys. 58, 2418 (2019)MathSciNetMATH Kundu, A., Singh, S.K.: Heisenberg–Langevin formalism for squeezing dynamics of linear hybrid optomechanical system. Int. J. Theor. Phys. 58, 2418 (2019)MathSciNetMATH
20.
go back to reference Wang, Q.: Precision temperature measurement with optomechanically induced transparency in an optomechanical system. Laser Phys. 28, 075201 (2018)ADS Wang, Q.: Precision temperature measurement with optomechanically induced transparency in an optomechanical system. Laser Phys. 28, 075201 (2018)ADS
21.
go back to reference Asjad, M., Zippilli, S., Tombesi, P., Vitali, D.: Large distance continuous variable communication with concatenated swaps. Phys. Scr. 90, 074055 (2015)ADS Asjad, M., Zippilli, S., Tombesi, P., Vitali, D.: Large distance continuous variable communication with concatenated swaps. Phys. Scr. 90, 074055 (2015)ADS
22.
go back to reference Asjad, M., Qasymeh, M., Eleuch, H.: A local area quantum teleportation network based on an array of electrically activated graphene waveguides. Opt. Express 30, 21016 (2022)ADS Asjad, M., Qasymeh, M., Eleuch, H.: A local area quantum teleportation network based on an array of electrically activated graphene waveguides. Opt. Express 30, 21016 (2022)ADS
23.
go back to reference Weis, S., Rivilere, R., Delleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)ADS Weis, S., Rivilere, R., Delleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)ADS
24.
go back to reference Asjad, M.: Electromagnetically-induced transparency in optomechanical systems with Bose–Einstein condensate. J. Russ. Laser Res. 34, 159 (2013) Asjad, M.: Electromagnetically-induced transparency in optomechanical systems with Bose–Einstein condensate. J. Russ. Laser Res. 34, 159 (2013)
25.
go back to reference Singh, S.K., Parvez, M., Abbas, T., Peng, Jia-Xin., Mazaheri, M., Asjad, M.: Tunable optical response and fast (slow) light in optomechanical system with phonon pump. Phys. Lett. A 442, 128181 (2022)MATH Singh, S.K., Parvez, M., Abbas, T., Peng, Jia-Xin., Mazaheri, M., Asjad, M.: Tunable optical response and fast (slow) light in optomechanical system with phonon pump. Phys. Lett. A 442, 128181 (2022)MATH
26.
go back to reference Singh, S.K., Asjad, M., Raymond Ooi, C.H.: Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf. Process. 21, 18 (2022)MathSciNetMATH Singh, S.K., Asjad, M., Raymond Ooi, C.H.: Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf. Process. 21, 18 (2022)MathSciNetMATH
27.
go back to reference Qu, Kenan, Agarwal, G.S.: Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys. Rev. A 87, 031802 (2013)ADS Qu, Kenan, Agarwal, G.S.: Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys. Rev. A 87, 031802 (2013)ADS
28.
go back to reference Asjad, M.: Optomechanically dark state in hybrid BEC-optomechanical systems. J. Russ. Laser Res. 34, 278 (2013) Asjad, M.: Optomechanically dark state in hybrid BEC-optomechanical systems. J. Russ. Laser Res. 34, 278 (2013)
29.
go back to reference Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Strong photon antibunching effect in a double cavity optomechanical system with squeezed driving. Phys. Rev. Lett. 99, 093901 (2006)ADS Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Strong photon antibunching effect in a double cavity optomechanical system with squeezed driving. Phys. Rev. Lett. 99, 093901 (2006)ADS
30.
go back to reference Asjad, M., Zippilli, S., Vitali, D.: Suppression of Stokes scattering and improved optomechanical cooling with squeezed light. Phys. Rev. A 94, 051801 (2016)ADS Asjad, M., Zippilli, S., Vitali, D.: Suppression of Stokes scattering and improved optomechanical cooling with squeezed light. Phys. Rev. A 94, 051801 (2016)ADS
31.
go back to reference Rossi, M., Kralj, N., Zippilli, S., Natali, R., Borrielli, A., Pandraud, G., Serra, E., Di, G., Giuseppe, Vitali, D.: Enhancing sideband cooling by feedback-controlled light. Phys. Rev. Lett. 119, 123603 (2017)ADS Rossi, M., Kralj, N., Zippilli, S., Natali, R., Borrielli, A., Pandraud, G., Serra, E., Di, G., Giuseppe, Vitali, D.: Enhancing sideband cooling by feedback-controlled light. Phys. Rev. Lett. 119, 123603 (2017)ADS
32.
go back to reference Asjad, M.: Cavity optomechanics with a Bose–Einstein condensate: normal mode splitting. J. Mod. Opt. 59, 917 (2012)ADS Asjad, M.: Cavity optomechanics with a Bose–Einstein condensate: normal mode splitting. J. Mod. Opt. 59, 917 (2012)ADS
33.
go back to reference Asjad, M., Saif, F.: Normal mode splitting in hybrid BEC-optomechanical system. Optik 125, 5455 (2014)ADS Asjad, M., Saif, F.: Normal mode splitting in hybrid BEC-optomechanical system. Optik 125, 5455 (2014)ADS
34.
go back to reference Singh, S.K., Mazaheri, M., Peng, J.-X., Sohail, A., Gu, Z., Asjad, M.: Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier. Quantum Inf. Process. 22, 198 (2023)MathSciNetMATHADS Singh, S.K., Mazaheri, M., Peng, J.-X., Sohail, A., Gu, Z., Asjad, M.: Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier. Quantum Inf. Process. 22, 198 (2023)MathSciNetMATHADS
35.
go back to reference Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)ADS Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)ADS
36.
go back to reference Liao, J.-Q., Nori, F.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)ADS Liao, J.-Q., Nori, F.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)ADS
37.
go back to reference Singh, S.K., Muniandy, S.V.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Int. J. Theor. Phys. 55, 287 (2016)MATH Singh, S.K., Muniandy, S.V.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Int. J. Theor. Phys. 55, 287 (2016)MATH
38.
go back to reference Singh, S.K., Raymond Ooi, C.H.: Quantum correlations of quadratic optomechanical oscillator. J. Opt. Soc. Am. B 31, 2390 (2014)ADS Singh, S.K., Raymond Ooi, C.H.: Quantum correlations of quadratic optomechanical oscillator. J. Opt. Soc. Am. B 31, 2390 (2014)ADS
39.
go back to reference Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)ADS Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)ADS
40.
go back to reference Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)ADS Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)ADS
41.
go back to reference Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)ADS Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)ADS
42.
go back to reference Grunwald, P., Singh, S.K., Vogel, W.: Raman-assisted Rabi resonances in two-mode cavity QED. Phys. Rev. A 83, 063806 (2011)ADS Grunwald, P., Singh, S.K., Vogel, W.: Raman-assisted Rabi resonances in two-mode cavity QED. Phys. Rev. A 83, 063806 (2011)ADS
43.
go back to reference Singh, S.K.: Quantum dynamics and nonclassical photon statistics of coherently driven Raman transition in bimodal cavity. J. Mod. Opt. 66, 562 (2019)ADS Singh, S.K.: Quantum dynamics and nonclassical photon statistics of coherently driven Raman transition in bimodal cavity. J. Mod. Opt. 66, 562 (2019)ADS
44.
go back to reference Singh, S.K.: Optical feedback-induced dynamics and nonclassical photon statistics of semiconductor microcavity laser. Appl. Phys. B 127, 90 (2021)ADS Singh, S.K.: Optical feedback-induced dynamics and nonclassical photon statistics of semiconductor microcavity laser. Appl. Phys. B 127, 90 (2021)ADS
45.
go back to reference Liao, J.-Q., Law, C.K.: Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)ADS Liao, J.-Q., Law, C.K.: Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)ADS
46.
go back to reference Ghosh, S., Liew, T.C.H.: Dynamical blockade in a single-mode bosonic system. Phys. Rev. Lett. 123, 013602 (2019)ADS Ghosh, S., Liew, T.C.H.: Dynamical blockade in a single-mode bosonic system. Phys. Rev. Lett. 123, 013602 (2019)ADS
47.
go back to reference Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)ADS Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)ADS
48.
go back to reference Zhu, G.-L., Lü, X.-Y., Wan, L.-L., Yin, T.-S., Bin, Q., Wu, Y.: Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime. Phys. Rev. A 97, 033830 (2018)ADS Zhu, G.-L., Lü, X.-Y., Wan, L.-L., Yin, T.-S., Bin, Q., Wu, Y.: Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime. Phys. Rev. A 97, 033830 (2018)ADS
49.
go back to reference Zou, F., Fan, L.-B., Huang, J.-F., Liao, J.-Q.: Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A 99, 043837 (2019)ADS Zou, F., Fan, L.-B., Huang, J.-F., Liao, J.-Q.: Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A 99, 043837 (2019)ADS
50.
go back to reference Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature 436, 87 (2005)ADS Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature 436, 87 (2005)ADS
51.
go back to reference Faraon, A., Fushman, I., Englund, D., Stoltz, D.N., Petroff, P., Vuckovic, J.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008) Faraon, A., Fushman, I., Englund, D., Stoltz, D.N., Petroff, P., Vuckovic, J.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008)
52.
go back to reference Reinhard, A., Volz, T., Winger, M., Badolato, A., Hennessy, K.J., Hu, E.L., Imamoglu, A.: Strongly correlated photons on a chip. Nat. Photon. 6, 93 (2012)ADS Reinhard, A., Volz, T., Winger, M., Badolato, A., Hennessy, K.J., Hu, E.L., Imamoglu, A.: Strongly correlated photons on a chip. Nat. Photon. 6, 93 (2012)ADS
53.
go back to reference Muller, K., Rundquist, A., Fischer, K.A., Sarmiento, T., Lagoudakis, K.G., Kelaita, Y.A., Sanchez Munoz, C., del Valle, E., Laussy, E.P., Vuckovic, J.: Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 114, 233601 (2015)ADS Muller, K., Rundquist, A., Fischer, K.A., Sarmiento, T., Lagoudakis, K.G., Kelaita, Y.A., Sanchez Munoz, C., del Valle, E., Laussy, E.P., Vuckovic, J.: Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 114, 233601 (2015)ADS
54.
go back to reference Liew, T.C.H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010)ADS Liew, T.C.H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010)ADS
55.
go back to reference Bamba, M., Imamoglu, A., Carusotto, I., Ciuti, C.: Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)ADS Bamba, M., Imamoglu, A., Carusotto, I., Ciuti, C.: Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)ADS
56.
go back to reference Bajcsy, M., Majumdar, A., Rundquist, A., Vuckovic, J.: Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity. New J. Phys. 15, 025014 (2013)ADS Bajcsy, M., Majumdar, A., Rundquist, A., Vuckovic, J.: Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity. New J. Phys. 15, 025014 (2013)ADS
57.
go back to reference Leonski, W., Tanas, R.: Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A 49, R20 (1994)ADS Leonski, W., Tanas, R.: Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A 49, R20 (1994)ADS
58.
go back to reference Tian, L., Carmichael, H.J.: Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A 46, R6801 (1992)ADS Tian, L., Carmichael, H.J.: Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A 46, R6801 (1992)ADS
59.
go back to reference Hoffman, A.J., Srinivasan, S.J., Schmidt, S., Spietz, L., Aumentado, J., Türeci, H.E., Houck, A.A.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)ADS Hoffman, A.J., Srinivasan, S.J., Schmidt, S., Spietz, L., Aumentado, J., Türeci, H.E., Houck, A.A.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)ADS
60.
go back to reference Snijders, H.J.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018)ADS Snijders, H.J.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018)ADS
61.
go back to reference Vaneph, C., Morvan, A., Aiello, G., Féchant, M., Aprili, M., Gabelli, J., Esteve, J.: Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018)ADS Vaneph, C., Morvan, A., Aiello, G., Féchant, M., Aprili, M., Gabelli, J., Esteve, J.: Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018)ADS
62.
go back to reference Shen, S., Qu, Y., Li, J., Wu, Y.: Tunable photon statistics in parametrically amplified photonic molecules. Phys. Rev. A 100(2), 023814 (2019)ADS Shen, S., Qu, Y., Li, J., Wu, Y.: Tunable photon statistics in parametrically amplified photonic molecules. Phys. Rev. A 100(2), 023814 (2019)ADS
63.
go back to reference Wang, D.Y., Bai, C.H., Liu, S., Zhang, S., Wang, H.F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. 22, 093006 (2020)ADS Wang, D.Y., Bai, C.H., Liu, S., Zhang, S., Wang, H.F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. 22, 093006 (2020)ADS
64.
go back to reference Zou, F., Lai, D.G., Liao, J.Q.: Enhancement of photon blockade effect via quantum interference. Opt. Express 28, 16175–16190 (2020)ADS Zou, F., Lai, D.G., Liao, J.Q.: Enhancement of photon blockade effect via quantum interference. Opt. Express 28, 16175–16190 (2020)ADS
65.
go back to reference Shen, H.Z., Zhou, Y.H., Yi, X.X.: Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A 91, 063808 (2015)ADS Shen, H.Z., Zhou, Y.H., Yi, X.X.: Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A 91, 063808 (2015)ADS
66.
go back to reference Flayac, H., Savona, V.: Unconventional photon blockade. Phys. Rev. A 96, 053810 (2017)ADS Flayac, H., Savona, V.: Unconventional photon blockade. Phys. Rev. A 96, 053810 (2017)ADS
67.
go back to reference Liu, J.S., Yang, J.Y., Liu, H.Y., Zhu, A.D.: Photon blockade by enhancing coupling via a nonlinear medium. Opt. Express 28, 18397–18406 (2020)ADS Liu, J.S., Yang, J.Y., Liu, H.Y., Zhu, A.D.: Photon blockade by enhancing coupling via a nonlinear medium. Opt. Express 28, 18397–18406 (2020)ADS
68.
go back to reference Shen, H.Z., Zhou, Y.H., Liu, H.D., Wang, G.C., Yi, X.X.: Exact optimal control of photon blockade with weakly nonlinear coupled cavities. Opt. Express 23, 32835–32858 (2015)ADS Shen, H.Z., Zhou, Y.H., Liu, H.D., Wang, G.C., Yi, X.X.: Exact optimal control of photon blockade with weakly nonlinear coupled cavities. Opt. Express 23, 32835–32858 (2015)ADS
69.
go back to reference Zhou, Y.H., Shen, H.Z., Shao, X.Q., Yi, X.X.: Strong photon antibunching with weak second-order nonlinearity under dissipation and coherent driving. Opt. Express 24, 17332–17344 (2016)ADS Zhou, Y.H., Shen, H.Z., Shao, X.Q., Yi, X.X.: Strong photon antibunching with weak second-order nonlinearity under dissipation and coherent driving. Opt. Express 24, 17332–17344 (2016)ADS
70.
go back to reference Hu, C.S., Huang, X.R., Shen, L.T., Yang, Z.B., Wu, H.Z.: Enhancement of entanglement in distant micromechanical mirrors using parametric interactions. Eur. Phys. J. D 71, 24 (2017)ADS Hu, C.S., Huang, X.R., Shen, L.T., Yang, Z.B., Wu, H.Z.: Enhancement of entanglement in distant micromechanical mirrors using parametric interactions. Eur. Phys. J. D 71, 24 (2017)ADS
71.
go back to reference Hu, C.S., Shen, L.T., Yang, Z.B., Wu, H., Li, Y., Zheng, S.B.: Manifestation of classical nonlinear dynamics in optomechanical entanglement with a parametric amplifier. Phys. Rev. A 100, 043824 (2019)ADS Hu, C.S., Shen, L.T., Yang, Z.B., Wu, H., Li, Y., Zheng, S.B.: Manifestation of classical nonlinear dynamics in optomechanical entanglement with a parametric amplifier. Phys. Rev. A 100, 043824 (2019)ADS
72.
go back to reference Amazioug, M., Daoud, M.: Measure and control of quantum correlations in optomechanics. Eur. Phys. J. D 75, 178 (2021)ADS Amazioug, M., Daoud, M.: Measure and control of quantum correlations in optomechanics. Eur. Phys. J. D 75, 178 (2021)ADS
Metadata
Title
Strong photon antibunching effect in a double-cavity optomechanical system with intracavity squeezed light
Authors
M. Amazioug
M. Daoud
S. K. Singh
M. Asjad
Publication date
01-08-2023
Publisher
Springer US
Published in
Quantum Information Processing / Issue 8/2023
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04052-8

Other articles of this Issue 8/2023

Quantum Information Processing 8/2023 Go to the issue