Skip to main content
Top
Published in: Cellulose 3/2018

19-01-2018 | Original Paper

Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black

Author: Fahad Alhashmi Alamer

Published in: Cellulose | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Herein we report the preparation and characterization of conductive cotton fabric prepared by drop casting the material with a composite of carbon black and polyaniline (an organic conductive polymer). A polar solvent, dimethylsulfoxide, was added to the composite to enhance its conductivity. The composite carbon black/polyaniline was coated on the surface of the fibers of the cotton fabric through a conventional “dip and dry” method. Fourier transform infrared spectroscopy, scanning and transmission electron microscopy were employed to characterize the complexes of carbon black/polyaniline and cotton fabric. The sheet resistance of the original cotton fabric was 3.57 × 1012 Ω/sq, but after coating with a composite of carbon black and polyaniline, the sheet resistance decreased to approximately 500 Ω/sq. Moreover, the resistance of cotton conducting fabric as a function of temperature was investigated from 298 to 573°K. The conductive cotton fabric was found to exhibit different behaviors including a metal–semiconductor transition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alhashmi Alamer F (2017) A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. J Alloys Compd 702:266–273CrossRef Alhashmi Alamer F (2017) A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. J Alloys Compd 702:266–273CrossRef
go back to reference Al-Saleh M, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746CrossRef Al-Saleh M, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746CrossRef
go back to reference Altinok AS, Ücgul İ, Öksuz AU (2014) Production of polyester/polyaniline, cotton/polyaniline composite fabrics and examing electrical characteristic. TEKSTİL ve KONFEKSİYON 24:1 Altinok AS, Ücgul İ, Öksuz AU (2014) Production of polyester/polyaniline, cotton/polyaniline composite fabrics and examing electrical characteristic. TEKSTİL ve KONFEKSİYON 24:1
go back to reference Austad A, Nayan N, Razak S (2017) Conductive kenaf/polyaniline sheets for electrostatic dissipatiom and electromagnatic interferance shielding packaging. Cellul Chem Technol 51:83–89 Austad A, Nayan N, Razak S (2017) Conductive kenaf/polyaniline sheets for electrostatic dissipatiom and electromagnatic interferance shielding packaging. Cellul Chem Technol 51:83–89
go back to reference Bajgar V, Penhaker M, Martinková L, Pavlovič A, Bober P, Trchová M, Stejskal J (2016) Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response. Sensors 16(4):498CrossRef Bajgar V, Penhaker M, Martinková L, Pavlovič A, Bober P, Trchová M, Stejskal J (2016) Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response. Sensors 16(4):498CrossRef
go back to reference Battista E, Lettera V, Villani M, Calestani D, Gentile F, Netti P (2017) Enzymatic sensing with laccase-functionalized textile organic biosensors. Org Electron 40:51–57CrossRef Battista E, Lettera V, Villani M, Calestani D, Gentile F, Netti P (2017) Enzymatic sensing with laccase-functionalized textile organic biosensors. Org Electron 40:51–57CrossRef
go back to reference Bhavsar V, Tripathi D (2017) Study of attenuation of microwaves by PPy-doped PVC films. Polym Eng Sci 57:89–94CrossRef Bhavsar V, Tripathi D (2017) Study of attenuation of microwaves by PPy-doped PVC films. Polym Eng Sci 57:89–94CrossRef
go back to reference Bowman D, Mattes B (2005) Conductive fiber prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32CrossRef Bowman D, Mattes B (2005) Conductive fiber prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32CrossRef
go back to reference Cai X, Zhang C, Zhang S, Fang Y, Zou DJ (2017) Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices. Mater Chem A 5:2444CrossRef Cai X, Zhang C, Zhang S, Fang Y, Zou DJ (2017) Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices. Mater Chem A 5:2444CrossRef
go back to reference Caldara M, Colleoni C, Guido E, Re V, Rosace G (2012) Development of a textile-optoelectronic pH meter based on hybrid xerogel doped with methyl red. Sens Actuat B 171:1013–1021CrossRef Caldara M, Colleoni C, Guido E, Re V, Rosace G (2012) Development of a textile-optoelectronic pH meter based on hybrid xerogel doped with methyl red. Sens Actuat B 171:1013–1021CrossRef
go back to reference Cao Y, Kovalev AE, Xiao R, Kim J, Mayer TS, Mallouk TE (2008) Electrical transport and chemical sensing properties of individual conducting polymer nanowires. Nano Lett 8(12):4653–4658CrossRef Cao Y, Kovalev AE, Xiao R, Kim J, Mayer TS, Mallouk TE (2008) Electrical transport and chemical sensing properties of individual conducting polymer nanowires. Nano Lett 8(12):4653–4658CrossRef
go back to reference Cherenack K, Pieterson L (2012) Smart textiles: challenges and opportunities. J Appl Phys 112:091301CrossRef Cherenack K, Pieterson L (2012) Smart textiles: challenges and opportunities. J Appl Phys 112:091301CrossRef
go back to reference Chizari K, Arjmandb M, Liu Z, Sundararaj U, Therriault D (2017) Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater Today Commun 11:112–118CrossRef Chizari K, Arjmandb M, Liu Z, Sundararaj U, Therriault D (2017) Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater Today Commun 11:112–118CrossRef
go back to reference Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens Actuat B 138:318–325CrossRef Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens Actuat B 138:318–325CrossRef
go back to reference Du X, Xiao M, Meng Y (2004) Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur Polym J 40:1489–1493CrossRef Du X, Xiao M, Meng Y (2004) Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur Polym J 40:1489–1493CrossRef
go back to reference Feng W, Bai X, Lian Y, Liang J, Wang X, Yoshino K (2003) Well-aligned polyaniline/carbon-nanotube composite films grown by in situ aniline polymerization. Carbon 41:1551–1557CrossRef Feng W, Bai X, Lian Y, Liang J, Wang X, Yoshino K (2003) Well-aligned polyaniline/carbon-nanotube composite films grown by in situ aniline polymerization. Carbon 41:1551–1557CrossRef
go back to reference Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganas O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577CrossRef Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganas O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577CrossRef
go back to reference Jalili R, Razal J, Innis P, Wallace G (2011) One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. J Appl Polym Sci 21:3363–3370 Jalili R, Razal J, Innis P, Wallace G (2011) One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. J Appl Polym Sci 21:3363–3370
go back to reference Kim B, Koncar V, Devaux E, Dufour C, Viallier P (2004) Electrical and morphogical of PP and PET conductive polymer fibers. Synth Met 146:167–174CrossRef Kim B, Koncar V, Devaux E, Dufour C, Viallier P (2004) Electrical and morphogical of PP and PET conductive polymer fibers. Synth Met 146:167–174CrossRef
go back to reference Kim B, Koncar V, Dufour C (2006) Polyaniline-coated PET conductive yarns: study of electrical, mechanical, and electro-mechanical properties. J Appl Polym 101:1252–1256CrossRef Kim B, Koncar V, Dufour C (2006) Polyaniline-coated PET conductive yarns: study of electrical, mechanical, and electro-mechanical properties. J Appl Polym 101:1252–1256CrossRef
go back to reference Little BK, Li Y, Cammarata V, Broughton R, Mills G (2011) Metallization of Kevlar fibers with gold. ACS Appl Mater Interfaces 3:1965–1973CrossRef Little BK, Li Y, Cammarata V, Broughton R, Mills G (2011) Metallization of Kevlar fibers with gold. ACS Appl Mater Interfaces 3:1965–1973CrossRef
go back to reference Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42:3957–3972CrossRef Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42:3957–3972CrossRef
go back to reference Meoli D, Plumlee T (2002) Interactive electronic textile development. Text Apparel 2:2 Meoli D, Plumlee T (2002) Interactive electronic textile development. Text Apparel 2:2
go back to reference Negru D, Buda C, Avram D (2012) Electrical conductivity of woven fabrics coated with carbon black particles. Fibres Text East Eur J 20:53–56 Negru D, Buda C, Avram D (2012) Electrical conductivity of woven fabrics coated with carbon black particles. Fibres Text East Eur J 20:53–56
go back to reference O’Connor B, Pipe K, Shtein M (2008) Fiber based organic photovoltaic devices. Appl Phys Lett 92:193306CrossRef O’Connor B, Pipe K, Shtein M (2008) Fiber based organic photovoltaic devices. Appl Phys Lett 92:193306CrossRef
go back to reference Onar N, Aksit A, Ebeoglugil M, Birlik I, Celik E, Ozdemir I (2009) Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. J Appl Polym Sci 114:2003–2010CrossRef Onar N, Aksit A, Ebeoglugil M, Birlik I, Celik E, Ozdemir I (2009) Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. J Appl Polym Sci 114:2003–2010CrossRef
go back to reference Otley M, Alhashmi Alamer F, Guo Y, Santana J, Eren E, Li M, Lombardi J, Sotzing G (2016) Phase segregation of PEDOT:PSS on textile to produce materials of > 10 A mm−2 current carrying capacity. Macromol Mater Eng 302:1600348CrossRef Otley M, Alhashmi Alamer F, Guo Y, Santana J, Eren E, Li M, Lombardi J, Sotzing G (2016) Phase segregation of PEDOT:PSS on textile to produce materials of > 10 A mm−2 current carrying capacity. Macromol Mater Eng 302:1600348CrossRef
go back to reference Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25:5965–5970CrossRef Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25:5965–5970CrossRef
go back to reference Sarkar K, Das D, Chaki T, Chattopadhyay S (2017) Macro-structured carbon clusters for developing waterproof, breathable conductive cotton fabric. Carbon 116:1–14CrossRef Sarkar K, Das D, Chaki T, Chattopadhyay S (2017) Macro-structured carbon clusters for developing waterproof, breathable conductive cotton fabric. Carbon 116:1–14CrossRef
go back to reference Semaltianos NG, Koidis C, Pitsalidis C, Karagiannidis P, Logothetidis S, Perrie W, Liu D, Edwardson SP, Fearon E, Potter RJ, Dearden G, Atkins KG (2011) Picosecond laser patterning of PEDOT: PSS thin films. Synth Met 161:431–439CrossRef Semaltianos NG, Koidis C, Pitsalidis C, Karagiannidis P, Logothetidis S, Perrie W, Liu D, Edwardson SP, Fearon E, Potter RJ, Dearden G, Atkins KG (2011) Picosecond laser patterning of PEDOT: PSS thin films. Synth Met 161:431–439CrossRef
go back to reference Skrifvars M, Soroudi A (2008) Melt spinning of carbon nanotube modified polypropylene for electrically conducting nanocomposite fibers. Solid State Phenom 151:43–47CrossRef Skrifvars M, Soroudi A (2008) Melt spinning of carbon nanotube modified polypropylene for electrically conducting nanocomposite fibers. Solid State Phenom 151:43–47CrossRef
go back to reference Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska MI (2015) In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactiveink-jet printing technique. Synth Met 202:49–62CrossRef Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska MI (2015) In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactiveink-jet printing technique. Synth Met 202:49–62CrossRef
go back to reference Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992CrossRef Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992CrossRef
go back to reference Tang X, Tian M, Qu L, Zhu S, Guo X, Han G, Sun K, Hu X, Wang Y, Xu X (2015) Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synth Met 202:82–88CrossRef Tang X, Tian M, Qu L, Zhu S, Guo X, Han G, Sun K, Hu X, Wang Y, Xu X (2015) Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synth Met 202:82–88CrossRef
go back to reference Woltornist S, Alhashmi Alamer F, McDannald A, Jain M, Sotzing G, Adamson D (2015) Preparation of conductive graphene/graphite infused fabrics using an interface trapping method. Carbon 81:38–42CrossRef Woltornist S, Alhashmi Alamer F, McDannald A, Jain M, Sotzing G, Adamson D (2015) Preparation of conductive graphene/graphite infused fabrics using an interface trapping method. Carbon 81:38–42CrossRef
go back to reference Wu K, Ting T, Wang G, Ho W, Shih C (2008) Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stab 93:483–488CrossRef Wu K, Ting T, Wang G, Ho W, Shih C (2008) Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stab 93:483–488CrossRef
go back to reference Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472CrossRef Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472CrossRef
go back to reference Yetisen A, Qu H, Manbachi A, Butt H, Dokmeci M, Hinestroza J, Skorobogatiy M, Khademhosseini A, Yu S (2016) Nanotechnology in textiles. ACS Nano 10:3042–3068CrossRef Yetisen A, Qu H, Manbachi A, Butt H, Dokmeci M, Hinestroza J, Skorobogatiy M, Khademhosseini A, Yu S (2016) Nanotechnology in textiles. ACS Nano 10:3042–3068CrossRef
go back to reference Zhang D, Miao M, Niu H, Wei Z (2014) Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8:4571–4579CrossRef Zhang D, Miao M, Niu H, Wei Z (2014) Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8:4571–4579CrossRef
Metadata
Title
Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black
Author
Fahad Alhashmi Alamer
Publication date
19-01-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1667-9

Other articles of this Issue 3/2018

Cellulose 3/2018 Go to the issue