Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2019

31-01-2019

Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method

Authors: Xiaoguang Pan, Aimin Sun, Yingqiang Han, Wei Zhang, Xiqian Zhao

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bismuth doped Ni–Cu–Co nano ferrites with the chemical composition Ni0.2Cu0.2Co0.6Fe2−xBixO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) were prepared by sol–gel auto-combustion technology. The analysis of the X-ray diffraction (XRD) patterns confirms that all the samples have a cubic spinel structure. The particle sizes of the prepared samples (between 51 and 55 nm) are determined by the Scherrer equation. The obtained Fourier transform infrared measurement also confirms the formation of the spinel structure. It was observed that with the increase of Bi3+ ion concentration, the protruding absorption band was slightly shifted to the high frequency side. Transmission electron microscopy images show the presence of particles which are spherically cubic shaped crystallites. It has been proved that the synthesized ferrite has pure phase and structure by Energy dispersive X-ray, and Bi3+-doping was successfully achieved. Cation redistribution in spinel ferrite nanoparticles are confirmed by X-ray photoelectron spectroscopy (XPS). The magnetic parameters of the samples are measured by Vibration sample magnetometer (VSM) at room temperature with a maximum magnetic field of 1 T. It can be clearly observed that the magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) decrease significantly with the bismuth ion concentration increases. This is because Bi3+ ions replace Fe3+ ions, and Bi3+–Fe3+ ion interactions are more predominates than Fe2+–Fe3+ ion interactions. This also indicates that the bismuth doped nickel copper cobalt ferrite has low magnetic properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. Pallai, D.O. Shah, Synthesis of high coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)CrossRef V. Pallai, D.O. Shah, Synthesis of high coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)CrossRef
2.
go back to reference S. Kumar, T.J. Shinde, P.N. Vasambekar, Microwave synthesis and characterization of nano crystalline Mn-Zn Ferrites. Adv. Mater. Lett. 4, 373–377 (2013)CrossRef S. Kumar, T.J. Shinde, P.N. Vasambekar, Microwave synthesis and characterization of nano crystalline Mn-Zn Ferrites. Adv. Mater. Lett. 4, 373–377 (2013)CrossRef
3.
go back to reference G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Chaudhary, Structural, magnetic and optical studies of nickel ferrite thin films. Adv. Mater. Lett. 3, 21–28 (2012)CrossRef G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Chaudhary, Structural, magnetic and optical studies of nickel ferrite thin films. Adv. Mater. Lett. 3, 21–28 (2012)CrossRef
4.
go back to reference T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, Microwave behavior of ferrites prepared via sol-gel method. J. Magn. Magn. Mater. 246, 360–365 (2002)CrossRef T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, Microwave behavior of ferrites prepared via sol-gel method. J. Magn. Magn. Mater. 246, 360–365 (2002)CrossRef
5.
go back to reference G.A. Sawatzky, F.V.D. Woude, A.H. Morrish, Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4.. J. Appl. Phys. 39, 1204–1205 (1968)CrossRef G.A. Sawatzky, F.V.D. Woude, A.H. Morrish, Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4.. J. Appl. Phys. 39, 1204–1205 (1968)CrossRef
6.
go back to reference S.M. Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Investigation of positron annihilation lifetime and magnetic properties of Co1 – xCuxFe2O4 nanoparticles. Mater. Res. Express. 6, 15023 (2019)CrossRef S.M. Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Investigation of positron annihilation lifetime and magnetic properties of Co1 – xCuxFe2O4 nanoparticles. Mater. Res. Express. 6, 15023 (2019)CrossRef
7.
go back to reference L.D. Tung, V.L. Kolesnichenko, D. Caruntu, N.H. Chou, C.J. O’Connor, C.J.L. Spinu, Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys. 93, 7486–7488 (2003)CrossRef L.D. Tung, V.L. Kolesnichenko, D. Caruntu, N.H. Chou, C.J. O’Connor, C.J.L. Spinu, Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys. 93, 7486–7488 (2003)CrossRef
8.
go back to reference A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermediat. 43, 6155–6165 (2017)CrossRef A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermediat. 43, 6155–6165 (2017)CrossRef
9.
go back to reference A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2 – xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35, 374–381 (2017)CrossRef A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2 – xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35, 374–381 (2017)CrossRef
10.
go back to reference J. Amighian, M. Mozaffari, B. Nasr, Preparation of nano-sized manganese ferrite (MnFe2O4) via co-precipitation method. Phys. Status Solidi C 3, 3188–3192 (2011)CrossRef J. Amighian, M. Mozaffari, B. Nasr, Preparation of nano-sized manganese ferrite (MnFe2O4) via co-precipitation method. Phys. Status Solidi C 3, 3188–3192 (2011)CrossRef
11.
go back to reference S. Uday Bhasker et al., Preparation and characterization of cobalt magnesium nano ferrites using auto-combustion method. Adv. Mater. Res. 584, 280–284 (2012)CrossRef S. Uday Bhasker et al., Preparation and characterization of cobalt magnesium nano ferrites using auto-combustion method. Adv. Mater. Res. 584, 280–284 (2012)CrossRef
12.
go back to reference N. Ranvah, Y. Melikhov, I.C. Nlebedim, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, Temperature dependence of magnetic anisotropy of germanium/cobalt cosubstituted cobalt ferrite. J. Appl. Phys. 105, 5181–5183 (2009)CrossRef N. Ranvah, Y. Melikhov, I.C. Nlebedim, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, Temperature dependence of magnetic anisotropy of germanium/cobalt cosubstituted cobalt ferrite. J. Appl. Phys. 105, 5181–5183 (2009)CrossRef
13.
go back to reference J.A. Paulsen, C.C.H. Lo, J.E. Snyder, A.P. Ring, L.L. Jones, D.C. Jiles, Study of the curie temperature of cobalt ferrite based composites for stress sensor applications. IEEE. Trans. Magn. 39, 3316–3318 (2003)CrossRef J.A. Paulsen, C.C.H. Lo, J.E. Snyder, A.P. Ring, L.L. Jones, D.C. Jiles, Study of the curie temperature of cobalt ferrite based composites for stress sensor applications. IEEE. Trans. Magn. 39, 3316–3318 (2003)CrossRef
14.
go back to reference M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Sci. Eng. B. 175, 14–21 (2010)CrossRef M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Sci. Eng. B. 175, 14–21 (2010)CrossRef
15.
go back to reference A.T. Raghavendar, D. Pajic, K. Zadro, T. Milekovic, P.V. Rao, K.M. Jadhav, D. Ravinder, Synthesis and magnetic properties of NiFe2–xAlxO4 nanoparticles. J. Magn. Magn. Mater. 316, 1–7 (2007)CrossRef A.T. Raghavendar, D. Pajic, K. Zadro, T. Milekovic, P.V. Rao, K.M. Jadhav, D. Ravinder, Synthesis and magnetic properties of NiFe2–xAlxO4 nanoparticles. J. Magn. Magn. Mater. 316, 1–7 (2007)CrossRef
16.
go back to reference J. Jing, L. Liangchao, X. Feng, Structural analysis and magnetic properties of Gd-doped Li–Ni ferrites prepared using rheological phase reaction. J. Rare Earths 25, 79–83 (2007)CrossRef J. Jing, L. Liangchao, X. Feng, Structural analysis and magnetic properties of Gd-doped Li–Ni ferrites prepared using rheological phase reaction. J. Rare Earths 25, 79–83 (2007)CrossRef
17.
go back to reference G. Chandrasekaran, S. Selvandan, K. Manivannane, Electrical and FTIR studies on Al substituted Mn–Zn mixed ferrites. J. Mater. Sci. Mater. Electron. 15, 15–18 (2004)CrossRef G. Chandrasekaran, S. Selvandan, K. Manivannane, Electrical and FTIR studies on Al substituted Mn–Zn mixed ferrites. J. Mater. Sci. Mater. Electron. 15, 15–18 (2004)CrossRef
18.
go back to reference S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. Mater. Today Proc. 2, 5559–5567 (2015)CrossRef S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. Mater. Today Proc. 2, 5559–5567 (2015)CrossRef
19.
go back to reference M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)CrossRef M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)CrossRef
20.
go back to reference K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al-doped CdO thin films. J. Alloys Compd. 509, 6756–6762 (2011)CrossRef K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al-doped CdO thin films. J. Alloys Compd. 509, 6756–6762 (2011)CrossRef
21.
go back to reference R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, S. Sendhilnathan, Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by coprecipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)CrossRef R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, S. Sendhilnathan, Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by coprecipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)CrossRef
22.
go back to reference K. Praveena, B. Radhika, S. Srinath, Dielectric and magnetic properties of NiFe2–xBixO4 nanoparticles at microwave frequencies prepared via co-precipitation method. Procedia Eng. 76, 1–7 (2014)CrossRef K. Praveena, B. Radhika, S. Srinath, Dielectric and magnetic properties of NiFe2–xBixO4 nanoparticles at microwave frequencies prepared via co-precipitation method. Procedia Eng. 76, 1–7 (2014)CrossRef
23.
go back to reference I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)CrossRef I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)CrossRef
24.
go back to reference H.M. Zaki, H.A. Dawoud, Far-Infrared spectra for copper–zinc mixed ferrites. Physica B. 405, 4476–4479 (2010)CrossRef H.M. Zaki, H.A. Dawoud, Far-Infrared spectra for copper–zinc mixed ferrites. Physica B. 405, 4476–4479 (2010)CrossRef
25.
go back to reference R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nano crystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 535 (2011)CrossRef R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nano crystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 535 (2011)CrossRef
26.
go back to reference M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys. 118, 174–180 (2009)CrossRef M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys. 118, 174–180 (2009)CrossRef
27.
go back to reference Z. Yang, Z. Ye, Z. Xu, B. Zhao, Effect of the morphology on the optical properties of ZnO nanostructures. Physica E. 42, 116–119 (2010)CrossRef Z. Yang, Z. Ye, Z. Xu, B. Zhao, Effect of the morphology on the optical properties of ZnO nanostructures. Physica E. 42, 116–119 (2010)CrossRef
28.
go back to reference A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni–Cu–Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017)CrossRef A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni–Cu–Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017)CrossRef
29.
go back to reference M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia, Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitution. J. Alloys Compd. 509, 2473–2477 (2011)CrossRef M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia, Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitution. J. Alloys Compd. 509, 2473–2477 (2011)CrossRef
30.
go back to reference M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 11691–11697 (2016)CrossRef M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 11691–11697 (2016)CrossRef
31.
go back to reference K. Nakamoto, Infrared and raman spectra of inorganic and coordination compounds, part A and part B, Two Volume Set, 6th edn. Sex. Transm. Infect. 85, 182–186 (2008) K. Nakamoto, Infrared and raman spectra of inorganic and coordination compounds, part A and part B, Two Volume Set, 6th edn. Sex. Transm. Infect. 85, 182–186 (2008)
32.
go back to reference U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. J. Alloys Compd. 555, 225–231 (2013)CrossRef U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. J. Alloys Compd. 555, 225–231 (2013)CrossRef
33.
go back to reference R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina et al., Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. J. Mater. Sci. Mater. Electron. 28, 6245–6261 (2017)CrossRef R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina et al., Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. J. Mater. Sci. Mater. Electron. 28, 6245–6261 (2017)CrossRef
34.
go back to reference R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina et al., Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2–xLaxO4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 9139–9154 (2017)CrossRef R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina et al., Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2–xLaxO4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 9139–9154 (2017)CrossRef
35.
go back to reference Y. Kang, L. Wang, Y. Wang, H. Zhang, Y. Wang, D. Hong, Y. Qv, S. Wang, Construction and enhanced gas sensing performances of CuO-modified α-Fe2O3 hybrid hollow spheres. Sensors Actuators B. 177, 570–576 (2013)CrossRef Y. Kang, L. Wang, Y. Wang, H. Zhang, Y. Wang, D. Hong, Y. Qv, S. Wang, Construction and enhanced gas sensing performances of CuO-modified α-Fe2O3 hybrid hollow spheres. Sensors Actuators B. 177, 570–576 (2013)CrossRef
36.
go back to reference L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, J. Zheng, H. Li, Z. Zhu, High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octa-hedrons synthesized by homogeneous precipitation method. Sensors Actuators B. 160, 364–370 (2011)CrossRef L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, J. Zheng, H. Li, Z. Zhu, High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octa-hedrons synthesized by homogeneous precipitation method. Sensors Actuators B. 160, 364–370 (2011)CrossRef
37.
go back to reference S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6–xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J. Mol. Struct. 1038, 45–51 (2013)CrossRef S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6–xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J. Mol. Struct. 1038, 45–51 (2013)CrossRef
38.
go back to reference A. Miller, Distribution of cations in spinels. J. Appl. Phys. 30, S24–S25 (1959)CrossRef A. Miller, Distribution of cations in spinels. J. Appl. Phys. 30, S24–S25 (1959)CrossRef
39.
go back to reference S. Singhal, S. Jauhar, Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2–xO4, 0 ≤ x ≤ 1) synthesized using sol gel auto combustion method. J. Mol. Struct. 1012, 182–188 (2012)CrossRef S. Singhal, S. Jauhar, Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2–xO4, 0 ≤ x ≤ 1) synthesized using sol gel auto combustion method. J. Mol. Struct. 1012, 182–188 (2012)CrossRef
40.
go back to reference S. Singhal, S.K. Barthwal, K. Chandra, XRD, magnetic and mössbauer spectral studies of nano size aluminum substituted cobalt ferrites (CoAlxFe2–xO4). J. Magn. Magn. Mater. 306, 233–240 (2006)CrossRef S. Singhal, S.K. Barthwal, K. Chandra, XRD, magnetic and mössbauer spectral studies of nano size aluminum substituted cobalt ferrites (CoAlxFe2–xO4). J. Magn. Magn. Mater. 306, 233–240 (2006)CrossRef
41.
go back to reference A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87–92 (2014)CrossRef A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87–92 (2014)CrossRef
42.
go back to reference T. Ibusuki, S. Kojima, O. Kitakami, Y. Shimada, Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE. Trans. Magn. 37, 2223–2225 (2001)CrossRef T. Ibusuki, S. Kojima, O. Kitakami, Y. Shimada, Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE. Trans. Magn. 37, 2223–2225 (2001)CrossRef
43.
go back to reference L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)CrossRef L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)CrossRef
44.
go back to reference N.K. Dung, N.H. Tuan, The effect of cobalt substitution on structure and magnetic properties of nickel ferrite. J. Sci. Math. Phys. 25, 153–159 (2009) N.K. Dung, N.H. Tuan, The effect of cobalt substitution on structure and magnetic properties of nickel ferrite. J. Sci. Math. Phys. 25, 153–159 (2009)
45.
go back to reference S. Bhukal, T. Namgyal, S. Mor, S. Bansal, S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co-Zn nanoferrites Co0.6Zn0.4CrxFe2–xO4 (0 ≤ x ≤ 1.0) prepared via sol–gel Au-to-combustion method. J. Mol. Struct. 1012, 162–167 (2012)CrossRef S. Bhukal, T. Namgyal, S. Mor, S. Bansal, S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co-Zn nanoferrites Co0.6Zn0.4CrxFe2–xO4 (0 ≤ x ≤ 1.0) prepared via sol–gel Au-to-combustion method. J. Mol. Struct. 1012, 162–167 (2012)CrossRef
46.
go back to reference J.S. Smart, The Néel theory of ferrimagnetism. Am. J. Phys. 23, 356–370 (2005)CrossRef J.S. Smart, The Néel theory of ferrimagnetism. Am. J. Phys. 23, 356–370 (2005)CrossRef
47.
go back to reference P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)CrossRef P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)CrossRef
Metadata
Title
Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method
Authors
Xiaoguang Pan
Aimin Sun
Yingqiang Han
Wei Zhang
Xiqian Zhao
Publication date
31-01-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00757-8

Other articles of this Issue 5/2019

Journal of Materials Science: Materials in Electronics 5/2019 Go to the issue