Skip to main content
Top

2013 | OriginalPaper | Chapter

28. Structural Complexity Management in Sustainable Engineering

Authors : W. Biedermann, Udo LindemannProf.

Published in: Handbook of Sustainable Engineering

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sustainable product development comprises several aspects. Beside environmental, material, and production issues, market success and design processes have to be taken into account. Methods for sustainable engineering have to address all these aspects simultaneously. Structural complexity management as a method allows for the modeling of different system aspects and their relations. Thus, it is particularly suited for sustainable engineering by providing a means of relating various concurrent perspectives onto a system. This chapter introduces the basic concepts and discusses their application. The use case illustrating the application deals with the development of a high-pressure pump.
Every system, for example, a technical product composed of parts, or a project consisting of process steps, people, and documents, is characterized by dependencies among the system’s parts. In practice, this collection of dependencies makes systems difficult to handle and extremely complex.
Dependencies of a system form structures, such as a sequential chain of dependencies, a loop, or a hierarchical tree. Such system structures show characteristic behaviors in practical applications. System elements, interlocked by dependencies in the structure of a loop, for example, may demonstrate self-energizing or self-impeding behavior. Thus, if system structures are identified, it is possible to predict system behavior.
A key characteristic of structural complexity management is the consideration of multiple aspects of dependencies. Geometric and functional dependencies between technical components, for example, can be processed jointly in order to describe the system’s behavior. This possibility is addressed as the “multiple-domain” approach and contrasts common “Design for X” perspectives in product design, where the X stands for a large variety of optimization targets that do not necessarily coexist simultaneously. However, focusing only on one specific objective, for example, cost or assembly, cannot provide comprehensive and sustainable system improvements. One-sided optimization of a system bears the risk of spreading single adaptations to a multitude of system elements. As system dependencies link different aspects of system behavior, they can, in fact, help to achieve the objectives of improved design by considering their combined occurrence.
When considering system structures, only the existence of dependencies has to be known and not their quantified specification. This allows applying structural complexity management in the early phases of product design, where detailed system specifications are often not available. Yet, decisions in early phases possess far-reaching consequences which can be beneficial or detrimental.
The approach to structural complexity management as shown here is able to deal with qualitative models and thus differs substantially from simulation approaches for complexity management. Simulation also applies system dependencies but tries to result in exact predictions of system behavior. However, the underlying computations in simulation approaches require detailed quantification of elements and dependencies.
A use case illustrates the application of these concepts. It deals with the development of high-pressure pumps. The aim was to optimize existing product structures of various current pump concepts. The use case shows how multiple product views, for example, geometry, function, and production, were modeled. The different views were combined to derive proposals for modules and carry-over parts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference W.F. Daenzer, F. Huber, Systems Engineering: Methodik und Praxis, 10th edn. (Verl. Industrielle Organisation, Zürich, 1999) W.F. Daenzer, F. Huber, Systems Engineering: Methodik und Praxis, 10th edn. (Verl. Industrielle Organisation, Zürich, 1999)
go back to reference K. Ehrlenspiel, Integrierte Produktentwicklung – Methoden für Prozessorganisation, Produkterstellung und Konstruktion, 3rd edn. (Hanser, München, 2007) K. Ehrlenspiel, Integrierte Produktentwicklung – Methoden für Prozessorganisation, Produkterstellung und Konstruktion, 3rd edn. (Hanser, München, 2007)
go back to reference W. Kersten, Vielfaltsmanagement: Integrative Lösungsansätze zur Optimierung und Beherrschung der Produkte und Teilevielfalt. München: TCW Transfer-Centrum 2002. (TCW-Report, Nr. 31) W. Kersten, Vielfaltsmanagement: Integrative Lösungsansätze zur Optimierung und Beherrschung der Produkte und Teilevielfalt. München: TCW Transfer-Centrum 2002. (TCW-Report, Nr. 31)
go back to reference M. Kreimeyer, U. Lindemann, Complexity Metrics in Engineering Design – Managing the Structure of Design Processes (Springer, Berlin, 2011)CrossRef M. Kreimeyer, U. Lindemann, Complexity Metrics in Engineering Design – Managing the Structure of Design Processes (Springer, Berlin, 2011)CrossRef
go back to reference U. Lindemann, Methodische Entwicklung Technischer Produkte, 2nd edn. (Springer, Berlin, 2007) U. Lindemann, Methodische Entwicklung Technischer Produkte, 2nd edn. (Springer, Berlin, 2007)
go back to reference U. Lindemann, M. Maurer, T. Braun, Structural Complexity Management – An Approach for the Field of Product Design (Springer, Berlin, 2009)CrossRef U. Lindemann, M. Maurer, T. Braun, Structural Complexity Management – An Approach for the Field of Product Design (Springer, Berlin, 2009)CrossRef
go back to reference M. Maurer, Structural Awareness in Complex Product Design (Dr-Hut, München, 2007) M. Maurer, Structural Awareness in Complex Product Design (Dr-Hut, München, 2007)
go back to reference G. Schuh, U. Schwenk, Produktkomplexität Managen (Hanser, München, 2001) G. Schuh, U. Schwenk, Produktkomplexität Managen (Hanser, München, 2001)
go back to reference H. Ulrich, G. Probst, Anleitung zum ganzheitlichen Denken und Handeln – Ein Brevier für Führungskräfte (Paul Haupt, Bern, 2001) H. Ulrich, G. Probst, Anleitung zum ganzheitlichen Denken und Handeln – Ein Brevier für Führungskräfte (Paul Haupt, Bern, 2001)
go back to reference A. Yassine, D. Falkenburg, K. Chelst, Engineering design management: an information structure approach. Int. J. Prod. Res. 37, 2957–2975 (1999)CrossRefMATH A. Yassine, D. Falkenburg, K. Chelst, Engineering design management: an information structure approach. Int. J. Prod. Res. 37, 2957–2975 (1999)CrossRefMATH
go back to reference A. Yassine, D. Whitney, S. Daleiden, J. Lavine, Connectivity maps: modeling and analysing relationships in product development processes. J. Eng. Des. 14(3), 377–394 (2003)CrossRef A. Yassine, D. Whitney, S. Daleiden, J. Lavine, Connectivity maps: modeling and analysing relationships in product development processes. J. Eng. Des. 14(3), 377–394 (2003)CrossRef
Metadata
Title
Structural Complexity Management in Sustainable Engineering
Authors
W. Biedermann
Udo LindemannProf.
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-1-4020-8939-8_26