Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2017

28-01-2017

Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material

Authors: Nitin Kumar, Alok Shukla, R. N. P. Choudhary

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, scientists and researcher are focussing on multiferroic materials which are widely used in various multifunctional devices. In this communication, synthesis and characterisation of nickel and titanium modified bismuth ferrite have been reported. A lead-free multiferroic compound, Bi(Ni0.40Ti0.40Fe0.20)O3, has been synthesized using solvent-free solid-state reaction route at 1073 K in an air atmosphere. The formation of a single-phase with orthorhombic symmetry and the substitution/concentration of Ni/Ti at the Fe-site of BiFeO3 were confirmed by X-ray diffraction and energy dispersive X-ray microanalysis spectroscopy techniques respectively. Based on X-ray reflection profiles, the average particle size was estimated to be around 30 nm. Study of surface morphology of the compound by field emission scanning electron microscope has shown nearly uniform distribution of grains of different dimension with some voids. The density (measured by Archimedes method) of as-synthesized pellets was found to be nearly 92.8% of the theoretical density. A significant effect of substitution of multiple elements at the Fe site on dielectric constant and tangent loss of BiFeO3 has been observed. Detailed analysis of dielectric and impedance data, collected in a wide range of frequency (1–1000 kHz) and temperature (298–773 K), has provided many important results on structure-properties relationship and dielectric relaxation of modified bismuth ferrite. Magnetic field dependent magnetisation, measured by vibrating sample magnetometer (VSM at room temperature), shows a significant enhancement in the value of remnant magnetization of Ni/Ti modified bismuth ferrite.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Gajek, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert et al., Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007)CrossRef M. Gajek, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert et al., Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007)CrossRef
2.
go back to reference M. Bibes, A. Barthélémy, Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)CrossRef M. Bibes, A. Barthélémy, Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)CrossRef
3.
go back to reference J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007)CrossRef J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007)CrossRef
4.
go back to reference G. Anjum, S. mullah, D.K. Shukla, R. Kumar, Magneto-electric coupling in multiferroic La0.8Bi0.2FeO3 ceramic. Mater. Lett. 64, 2003–2005 (2010)CrossRef G. Anjum, S. mullah, D.K. Shukla, R. Kumar, Magneto-electric coupling in multiferroic La0.8Bi0.2FeO3 ceramic. Mater. Lett. 64, 2003–2005 (2010)CrossRef
5.
go back to reference N. Van Minh, N. Gia Quan, Structural, optical and electromagnetic properties of Bi1–xHoxFeO3 multiferroic materials. J. Alloy. Compd. 509, 2663–2666 (2011)CrossRef N. Van Minh, N. Gia Quan, Structural, optical and electromagnetic properties of Bi1–xHoxFeO3 multiferroic materials. J. Alloy. Compd. 509, 2663–2666 (2011)CrossRef
6.
go back to reference L. Bin, C. Wang, W. Liu, M. Ye, N. Wang, Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol-gel electrospinning technique. Mater. Lett. 90, 45–48 (2013)CrossRef L. Bin, C. Wang, W. Liu, M. Ye, N. Wang, Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol-gel electrospinning technique. Mater. Lett. 90, 45–48 (2013)CrossRef
7.
go back to reference W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–764 (2006)CrossRef W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–764 (2006)CrossRef
8.
go back to reference S.J. Clark, J. Robertson, Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 90, 132903 (2007)CrossRef S.J. Clark, J. Robertson, Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 90, 132903 (2007)CrossRef
9.
go back to reference V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628 (2002)CrossRef V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628 (2002)CrossRef
10.
go back to reference Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRef Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRef
11.
go back to reference Y.M. Chiang, D.P. Birnie III, W.D. Kingery, in Physical Ceramics: Principles for Ceramic Science & Engineering, 2nd ed. (Wiley, New York, 1997) Y.M. Chiang, D.P. Birnie III, W.D. Kingery, in Physical Ceramics: Principles for Ceramic Science & Engineering, 2nd ed. (Wiley, New York, 1997)
12.
go back to reference J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhi, Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics. Appl. Phys. Lett. 96, 102509 (2010)CrossRef J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhi, Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics. Appl. Phys. Lett. 96, 102509 (2010)CrossRef
13.
go back to reference Y. Wang, C.-W. Nana, Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 89, 052903 (2006)CrossRef Y. Wang, C.-W. Nana, Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 89, 052903 (2006)CrossRef
14.
go back to reference Z. Wen, G. Hu, S. Fan, C. Yang, W. Wu, Y. Zhou, X. Chen, S. Cui, Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Films 517, 4497–4501 (2009)CrossRef Z. Wen, G. Hu, S. Fan, C. Yang, W. Wu, Y. Zhou, X. Chen, S. Cui, Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Films 517, 4497–4501 (2009)CrossRef
15.
go back to reference A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural, dielectric and magnetic characteristics of Bi(Ni0.25Ti0.25Fe0.50)O3 ceramics. J. Mater. Sci. Mater. Electron. 27, 1209–1216 (2016)CrossRef A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural, dielectric and magnetic characteristics of Bi(Ni0.25Ti0.25Fe0.50)O3 ceramics. J. Mater. Sci. Mater. Electron. 27, 1209–1216 (2016)CrossRef
16.
go back to reference A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural and electrical characteristics of (Co, Ti) modified BiFeO3. J. Mater. Sci. Mater. Electron. 27, 7115–7123 (2016)CrossRef A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural and electrical characteristics of (Co, Ti) modified BiFeO3. J. Mater. Sci. Mater. Electron. 27, 7115–7123 (2016)CrossRef
17.
go back to reference N. Kumar, A. Shukla, R.N.P. Choudhary, C. Behera, Structural and dielectric studies of Bi(Ni0.45Ti0.45Fe0.10)O3 ceramics. AIP Conf. Proc., 1731(1), 030008 (2016). doi:10.1063/1.4947613 CrossRef N. Kumar, A. Shukla, R.N.P. Choudhary, C. Behera, Structural and dielectric studies of Bi(Ni0.45Ti0.45Fe0.10)O3 ceramics. AIP Conf. Proc., 1731(1), 030008 (2016). doi:10.​1063/​1.​4947613 CrossRef
18.
go back to reference N. Kumar, A. Shukla, R.N.P Choudhary, C. Behera, Structural, electrical and magnetic properties of Bi(Ni0.45Ti0.45Fe0.1)O3. J. Alloy. Compd. 688, 858–869 (2016)CrossRef N. Kumar, A. Shukla, R.N.P Choudhary, C. Behera, Structural, electrical and magnetic properties of Bi(Ni0.45Ti0.45Fe0.1)O3. J. Alloy. Compd. 688, 858–869 (2016)CrossRef
19.
go back to reference B. Park, An interactive powder diffraction data interpretations and indexing Program Version 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042 B. Park, An interactive powder diffraction data interpretations and indexing Program Version 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042
20.
go back to reference B.D. Cullity, in Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, USA, 1978) B.D. Cullity, in Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, USA, 1978)
21.
go back to reference P. Pandit, S. Satapathy, P.K Gupta, Effect of La substitution on conductivity and dielectric properties of Bi1–xLaxFeO3 ceramics: an impedance spectroscopy analysis. Physica B 406, 2669–2677 (2011)CrossRef P. Pandit, S. Satapathy, P.K Gupta, Effect of La substitution on conductivity and dielectric properties of Bi1–xLaxFeO3 ceramics: an impedance spectroscopy analysis. Physica B 406, 2669–2677 (2011)CrossRef
22.
go back to reference E.M. Anton, W. Jo, D. Damjanovic, J. Rodel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108/1–14 (2011)CrossRef E.M. Anton, W. Jo, D. Damjanovic, J. Rodel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108/1–14 (2011)CrossRef
23.
go back to reference L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990) L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990)
24.
go back to reference S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111, 074105 (2012)CrossRef S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111, 074105 (2012)CrossRef
25.
go back to reference D. Maurya, H. Thota, A. Garg, B. Pandey, H.C. Verma, Magnetic studies of multiferroic Bi1–xSmxFeO3 ceramics synthesized by mechanical activation assisted processes. J. Phys. Cond. Matter 21, 026007 (2009)CrossRef D. Maurya, H. Thota, A. Garg, B. Pandey, H.C. Verma, Magnetic studies of multiferroic Bi1–xSmxFeO3 ceramics synthesized by mechanical activation assisted processes. J. Phys. Cond. Matter 21, 026007 (2009)CrossRef
26.
go back to reference J.R. Macdonald, W.B. Johnson, Impedance Spectroscopy Theory, Experiments and Applications (Wiley, Hoboken, 2005) J.R. Macdonald, W.B. Johnson, Impedance Spectroscopy Theory, Experiments and Applications (Wiley, Hoboken, 2005)
27.
go back to reference S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3,ceramics. Mater. Chem. Phys. 87(2), 256–263 (2004)CrossRef S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3,ceramics. Mater. Chem. Phys. 87(2), 256–263 (2004)CrossRef
28.
go back to reference S. Brahma, R.N.P. Choudhary, A.K. Thakur, AC impedance analysis of LaLi-Mo2O8 electroceramics. Physica B 355, 188–201 (2005)CrossRef S. Brahma, R.N.P. Choudhary, A.K. Thakur, AC impedance analysis of LaLi-Mo2O8 electroceramics. Physica B 355, 188–201 (2005)CrossRef
29.
go back to reference A. Belboukhari, Z. Abkhar, Y. Gagou, J. Belhadi, R. Elmoznine, D. Mezzane, M. Ei Marssi, I. Luk’yanchuk, Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic. Eur. Phys. J. B 85(6), 1–9 (2012)CrossRef A. Belboukhari, Z. Abkhar, Y. Gagou, J. Belhadi, R. Elmoznine, D. Mezzane, M. Ei Marssi, I. Luk’yanchuk, Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic. Eur. Phys. J. B 85(6), 1–9 (2012)CrossRef
30.
go back to reference A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)CrossRef A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)CrossRef
31.
go back to reference C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J. Mater. Sci. 41, 369–375 (2006)CrossRef C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J. Mater. Sci. 41, 369–375 (2006)CrossRef
32.
go back to reference R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, Electrical and pyroelectric properties of lanthanum based niobate. J. Phys. Chem. Solids 74(2), 377–385 (2013)CrossRef R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, Electrical and pyroelectric properties of lanthanum based niobate. J. Phys. Chem. Solids 74(2), 377–385 (2013)CrossRef
33.
go back to reference M. Hodge, M.D. Ingram, A.R. West, A new method for analyzing the ac- behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. 58, 429–432 (1975)CrossRef M. Hodge, M.D. Ingram, A.R. West, A new method for analyzing the ac- behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. 58, 429–432 (1975)CrossRef
34.
go back to reference A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301–1310 (1999)CrossRef A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301–1310 (1999)CrossRef
35.
go back to reference J. Liu, Ch.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119(5), 2812–2819 (2003)CrossRef J. Liu, Ch.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119(5), 2812–2819 (2003)CrossRef
36.
go back to reference N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79, 1633–1641 (1996)CrossRef N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79, 1633–1641 (1996)CrossRef
37.
go back to reference R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13(2), 147–149 (1984)CrossRef R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13(2), 147–149 (1984)CrossRef
38.
go back to reference J.S. Kim, Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J. Phys. Soc. Jpn. 70, 3129–3133 (2001)CrossRef J.S. Kim, Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J. Phys. Soc. Jpn. 70, 3129–3133 (2001)CrossRef
39.
go back to reference S. Dash, R.N.P. Choudhary, A. Kumar, Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J. Phys. Chem. Solids 75, 1376–1382 (2014)CrossRef S. Dash, R.N.P. Choudhary, A. Kumar, Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J. Phys. Chem. Solids 75, 1376–1382 (2014)CrossRef
40.
go back to reference B. Pati, R.N.P. Choudhary, P.R. Das, Phase transition and electrical properties of strontium orthovanadate. J. Alloy. Compd. 579, 218–226 (2013)CrossRef B. Pati, R.N.P. Choudhary, P.R. Das, Phase transition and electrical properties of strontium orthovanadate. J. Alloy. Compd. 579, 218–226 (2013)CrossRef
41.
go back to reference A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996) A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996)
42.
go back to reference C. Karthik, K.B.R. Varma, Dielectric and AC Conductivity behaviour of BaBi2Nb2O9 ceramics. J. Phys. Chem. Solids 67(12), 2437–2441 (2006)CrossRef C. Karthik, K.B.R. Varma, Dielectric and AC Conductivity behaviour of BaBi2Nb2O9 ceramics. J. Phys. Chem. Solids 67(12), 2437–2441 (2006)CrossRef
43.
go back to reference E. Venkata Ramana, M.P.F. Graca, M.A. Valente, T. Bhima Sankaram, Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications. J. Alloy. Compd. 583, 198–205 (2014)CrossRef E. Venkata Ramana, M.P.F. Graca, M.A. Valente, T. Bhima Sankaram, Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications. J. Alloy. Compd. 583, 198–205 (2014)CrossRef
44.
go back to reference J. Wang, J.B. Neaton, H. Zheng et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)CrossRef J. Wang, J.B. Neaton, H. Zheng et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)CrossRef
45.
go back to reference S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. J. Mater. Sci. Mater. Electron. 25, 1915–1921 (2014)CrossRef S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. J. Mater. Sci. Mater. Electron. 25, 1915–1921 (2014)CrossRef
46.
go back to reference D. Maurya, H. Thota, K.S. Nalwa, A. Garg, BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: a comparative study. J. Alloy. Compd. 4, 477–780 (2009) D. Maurya, H. Thota, K.S. Nalwa, A. Garg, BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: a comparative study. J. Alloy. Compd. 4, 477–780 (2009)
47.
go back to reference G. Singh, V.S. Tiwari, P.K. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic. J. Appl. Phys. 107, 064103 (2010)CrossRef G. Singh, V.S. Tiwari, P.K. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic. J. Appl. Phys. 107, 064103 (2010)CrossRef
48.
go back to reference H.O. Rodrigues, G.F.M.P. Junior, J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix. J. Phys. Chem. Solids 71, 1329–1336 (2010)CrossRef H.O. Rodrigues, G.F.M.P. Junior, J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix. J. Phys. Chem. Solids 71, 1329–1336 (2010)CrossRef
49.
go back to reference P. Guzdek, The magnetostrictive and magnetoelectric characterization of Ni0.3Zn0.62Cu0.08Fe2O4–Pb(FeNb)0.5O3 laminated composite. J. Magn. Magn. Mater. 349, 219–223 (2014)CrossRef P. Guzdek, The magnetostrictive and magnetoelectric characterization of Ni0.3Zn0.62Cu0.08Fe2O4–Pb(FeNb)0.5O3 laminated composite. J. Magn. Magn. Mater. 349, 219–223 (2014)CrossRef
Metadata
Title
Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material
Authors
Nitin Kumar
Alok Shukla
R. N. P. Choudhary
Publication date
28-01-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6359-y

Other articles of this Issue 9/2017

Journal of Materials Science: Materials in Electronics 9/2017 Go to the issue