Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2021

01-04-2021

Structural, electrical, and optical properties of ITO thin films and their influence on performance of CdS/CdTe thin-film solar cells

Authors: Moustafa Ahmed, Ahmed Bakry, Essam R. Shaaban, Hamed Dalir

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

ITO was prepared by mixing gradient In2O3 and SnO2 powders using solid-phase reaction manner. Using electron beam gun tool, ITO films with varied thicknesses were fabricated. The structures and electrical and optical parameters of the prepared films were studied. XRD patterns were used to establish the micro-structural parameters (lattice strain and crystallite size). The SEM shows improvement of grain size with the increase of the film thickness. The electrical parameters of ITO films were measured by means of the standard four-point probe method. It was found that when the film thickness increases from 75 to 375 nm, the resistivity decreases to lower value of 1.65 × 10–4 Ω cm and slightly increases to 1.93 × 10–4 Ω cm at thickness of 375 nm. The ITO films with lower electrical properties are appropriate for high-efficiency CdTe solar cells. In terms of spectral ellipsometry, three optical layer models (adhesive layer of the substrate/B-spline layer of ITO film/surface roughness layer) were applied to estimate the film thickness with high accuracy. The absorption coefficient and energy gap were calculated from the transmission and reflection spectra in the strong absorption region. As the film thickness increases, the optical energy gap was found to increase from 3.56 to 3.69 eV. In terms of Hall effect measurements, both carrier concentration and hall mobility were determined. In addition, influences of ITO layers with various thicknesses on the performance of CdS/CdTe solar cells were checked. When the ITO window layer thickness is 325 nm, Jsc = 17 mA/cm2, Voc = 0.82 V, and FF = 57.4%, the calculated highest power conversion efficiency (PCE) is 8.6%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference H. Kostlin, R. Jost, W. Lems, Optical and electrical properties of doped In2O3 films. Phys. Status Solidi A 29, 87 (1975)CrossRef H. Kostlin, R. Jost, W. Lems, Optical and electrical properties of doped In2O3 films. Phys. Status Solidi A 29, 87 (1975)CrossRef
4.
go back to reference J.H. Park, C. Buurma, S. Sivananthan, R. Kodama, W. Gao, T.A. Gessert, Appl. Surf. Sci. 307, 388–392 (2014)CrossRef J.H. Park, C. Buurma, S. Sivananthan, R. Kodama, W. Gao, T.A. Gessert, Appl. Surf. Sci. 307, 388–392 (2014)CrossRef
7.
8.
go back to reference A. Klo Eppel, W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, J. Trube, Thin Solid Films 365, 139–146 (2000)CrossRef A. Klo Eppel, W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, J. Trube, Thin Solid Films 365, 139–146 (2000)CrossRef
9.
11.
12.
go back to reference K.-Y. Pan, L.-D. Lin, L.-W. Chang, H.C. Shih, Appl. Surf. Sci. 273, 12–18 (2013)CrossRef K.-Y. Pan, L.-D. Lin, L.-W. Chang, H.C. Shih, Appl. Surf. Sci. 273, 12–18 (2013)CrossRef
13.
go back to reference J.B. Choi, J.H. Kim, K.A. Jeon, S.Y. Lee, Mater. Sci. Eng. B 102, 376–379 (2003)CrossRef J.B. Choi, J.H. Kim, K.A. Jeon, S.Y. Lee, Mater. Sci. Eng. B 102, 376–379 (2003)CrossRef
14.
go back to reference J.M. Dekkers, G. Rijnders, D.H.A. Blank, Appl. Phys. Lett. 88, 151908 (2006)CrossRef J.M. Dekkers, G. Rijnders, D.H.A. Blank, Appl. Phys. Lett. 88, 151908 (2006)CrossRef
15.
go back to reference Y.C. Park, Y.S. Kim, H.K. Seo, S.G. Ansari, H.S. Shin, Surf. Coat. Technol. 161, 62–69 (2002)CrossRef Y.C. Park, Y.S. Kim, H.K. Seo, S.G. Ansari, H.S. Shin, Surf. Coat. Technol. 161, 62–69 (2002)CrossRef
16.
go back to reference Y.S. Kim, Y.C. Park, S.G. Ansari, B.S. Lee, H.S. Shin, Thin Solid Films 426, 124–131 (2003)CrossRef Y.S. Kim, Y.C. Park, S.G. Ansari, B.S. Lee, H.S. Shin, Thin Solid Films 426, 124–131 (2003)CrossRef
17.
go back to reference V. Brinzari, I. Damaskin, L. Trakhtenberg, B.K. Cho, G. Korotcenkov, Thin Solid Films 552, 225–231 (2014)CrossRef V. Brinzari, I. Damaskin, L. Trakhtenberg, B.K. Cho, G. Korotcenkov, Thin Solid Films 552, 225–231 (2014)CrossRef
18.
go back to reference P.K. Manoj, B. Joseph, V.K. Vaidyan, D. Sumangala Devi Amma, Ceram. Int. 33, 273–278 (2007)CrossRef P.K. Manoj, B. Joseph, V.K. Vaidyan, D. Sumangala Devi Amma, Ceram. Int. 33, 273–278 (2007)CrossRef
19.
go back to reference H. El Rhaleb, E. Benamar, M. Rami, J.P. Roger, A. Hakam, A. Ennaoui, Appl. Surf. Sci. 201, 138–145 (2002)CrossRef H. El Rhaleb, E. Benamar, M. Rami, J.P. Roger, A. Hakam, A. Ennaoui, Appl. Surf. Sci. 201, 138–145 (2002)CrossRef
20.
go back to reference E. Benamar, M. Rami, C. Messaoudi, D. Sayah, A. Ennaoui, Sol. Energy Mater. Sol. Cells 56, 125–139 (1999)CrossRef E. Benamar, M. Rami, C. Messaoudi, D. Sayah, A. Ennaoui, Sol. Energy Mater. Sol. Cells 56, 125–139 (1999)CrossRef
21.
go back to reference A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 509, 3108–3115 (2011)CrossRef A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 509, 3108–3115 (2011)CrossRef
22.
go back to reference K. Ravichandran, K. Thirumurugan, J. Mater. Sci. Technol. 30(2), 97–102 (2014)CrossRef K. Ravichandran, K. Thirumurugan, J. Mater. Sci. Technol. 30(2), 97–102 (2014)CrossRef
23.
go back to reference S. Marikkannu, M. Kashif, N. Sethupathy, V.S. Vidhya, S. Piraman, A. Ayeshamariam, M. Bououdina, N.M. Ahmed, M. Jayachandran, Mater. Sci. Semicond. Process. 27, 562 (2014)CrossRef S. Marikkannu, M. Kashif, N. Sethupathy, V.S. Vidhya, S. Piraman, A. Ayeshamariam, M. Bououdina, N.M. Ahmed, M. Jayachandran, Mater. Sci. Semicond. Process. 27, 562 (2014)CrossRef
24.
go back to reference M. Nisha, S. Anusha, A. Antony, R. Manoj, M.K. Jayaraj, Appl. Surf. Sci. 252, 1430 (2005)CrossRef M. Nisha, S. Anusha, A. Antony, R. Manoj, M.K. Jayaraj, Appl. Surf. Sci. 252, 1430 (2005)CrossRef
25.
go back to reference V.S. Reddy, K. Das, A. Dhar, S.K. Ray, Semicond. Sci. Technol. 21, 1747 (2006)CrossRef V.S. Reddy, K. Das, A. Dhar, S.K. Ray, Semicond. Sci. Technol. 21, 1747 (2006)CrossRef
26.
go back to reference N. El-Kabnay, E.R. Shaaban, N. Afify, A.M. Abou-Sehly, Physica B 403, 31 (2008)CrossRef N. El-Kabnay, E.R. Shaaban, N. Afify, A.M. Abou-Sehly, Physica B 403, 31 (2008)CrossRef
28.
go back to reference P.-S. Shen, C.-M. Tseng, T.-C.-K. Shih, M.-H. Li, P. Chen, Sol. Energy 120, 345–356 (2015)CrossRef P.-S. Shen, C.-M. Tseng, T.-C.-K. Shih, M.-H. Li, P. Chen, Sol. Energy 120, 345–356 (2015)CrossRef
30.
go back to reference E.R. Shaaban, I. Kansal, S. Mohamed, J.M. Ferreira, Physica B Condens. Matter 404, 3571 (2009)CrossRef E.R. Shaaban, I. Kansal, S. Mohamed, J.M. Ferreira, Physica B Condens. Matter 404, 3571 (2009)CrossRef
31.
go back to reference J. Zhang, L. Feng, W. Cai, J. Zheng, Y. Cai, B. Li, L. Wu, Y. Shao, Thin Solid Films 414, 113–118 (2002)CrossRef J. Zhang, L. Feng, W. Cai, J. Zheng, Y. Cai, B. Li, L. Wu, Y. Shao, Thin Solid Films 414, 113–118 (2002)CrossRef
32.
go back to reference A. Goktas, F. Aslan, I.H. Mutlu, J. Mater. Sci. Mater. Electron. 23, 605–611 (2012)CrossRef A. Goktas, F. Aslan, I.H. Mutlu, J. Mater. Sci. Mater. Electron. 23, 605–611 (2012)CrossRef
33.
go back to reference R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. (Prentice Hall, New Jersey, 2002), pp. 81–88. ISBN 0-201-44494-1 R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. (Prentice Hall, New Jersey, 2002), pp. 81–88. ISBN 0-201-44494-1
35.
go back to reference D. Pereda Cubian, M. Haddad, R. Andre, R. Frey, G. Roosen, J. Arce, C. Diego, L. Flytzains, Phys. Rev. B 67, 45308 (2003)CrossRef D. Pereda Cubian, M. Haddad, R. Andre, R. Frey, G. Roosen, J. Arce, C. Diego, L. Flytzains, Phys. Rev. B 67, 45308 (2003)CrossRef
36.
go back to reference M. Emam-Ismail, E.R. Shaaban, M. El-Hagary, I. Shaltout, Philos. Mag. 90, 3499 (2010)CrossRef M. Emam-Ismail, E.R. Shaaban, M. El-Hagary, I. Shaltout, Philos. Mag. 90, 3499 (2010)CrossRef
37.
go back to reference M. Emam-Ismail, M. El-Hagary, E.R. Shaaban, A.M. Al-Hedeib, J. Alloys Compd. 532, 16 (2012)CrossRef M. Emam-Ismail, M. El-Hagary, E.R. Shaaban, A.M. Al-Hedeib, J. Alloys Compd. 532, 16 (2012)CrossRef
38.
go back to reference M. Mohamed, A.M. Abdelraheem, M.I. AbdElrahman, N.M.A. Hadia, E.R. Shaaban, Appl. Phys. A 125, 483 (2019)CrossRef M. Mohamed, A.M. Abdelraheem, M.I. AbdElrahman, N.M.A. Hadia, E.R. Shaaban, Appl. Phys. A 125, 483 (2019)CrossRef
39.
go back to reference M. Mohamed, E. Shaaban, M.N. Abd-el Salam, A. Abdel-Latief, S.A. Mahmoud, M. Abdel-Rahim, Optik 178, 1302–1312 (2019)CrossRef M. Mohamed, E. Shaaban, M.N. Abd-el Salam, A. Abdel-Latief, S.A. Mahmoud, M. Abdel-Rahim, Optik 178, 1302–1312 (2019)CrossRef
41.
go back to reference E. Bacaksiz, S. Aksu, N. Ozer, M. Tomakin, A. Ozcelik, Appl. Surf. Sci. 256, 1566 (2009)CrossRef E. Bacaksiz, S. Aksu, N. Ozer, M. Tomakin, A. Ozcelik, Appl. Surf. Sci. 256, 1566 (2009)CrossRef
42.
go back to reference J. Tauc, R. Grigorovici, A. Vancu, physica status solidi (b) 15(2), 627–637 (1966)CrossRef J. Tauc, R. Grigorovici, A. Vancu, physica status solidi (b) 15(2), 627–637 (1966)CrossRef
43.
go back to reference T. Mahalingam, V. Dhanasekaran, R. Chandramohan, J.K. Rhee, J. Mater. Sci. 47, 1950 (2012)CrossRef T. Mahalingam, V. Dhanasekaran, R. Chandramohan, J.K. Rhee, J. Mater. Sci. 47, 1950 (2012)CrossRef
44.
go back to reference J.H. Kim, B.D. Ahn, C.H. Lee, K.A. Jeon, H.S. Kang, G.H. Kim, S.Y. Lee, Thin Solid Films 515, 3580 (2007)CrossRef J.H. Kim, B.D. Ahn, C.H. Lee, K.A. Jeon, H.S. Kang, G.H. Kim, S.Y. Lee, Thin Solid Films 515, 3580 (2007)CrossRef
45.
go back to reference A. Elikkottil, M. Tahersima, S. Gu, V.J. Sorger, B. Pesala, A spectrally-tunable dielectric grating based metasurface for broadband planar light concentrator. Nat. Sci. Rep. 9, 11723 (2019)CrossRef A. Elikkottil, M. Tahersima, S. Gu, V.J. Sorger, B. Pesala, A spectrally-tunable dielectric grating based metasurface for broadband planar light concentrator. Nat. Sci. Rep. 9, 11723 (2019)CrossRef
46.
go back to reference S. Gupta, M.H. Tahersima, V.J. Sorger, B. Pesala, Silicon nitride grating based planar spectral splitting concentrator for NIR light harvesting. Opt. Express 28, 15 (2020) S. Gupta, M.H. Tahersima, V.J. Sorger, B. Pesala, Silicon nitride grating based planar spectral splitting concentrator for NIR light harvesting. Opt. Express 28, 15 (2020)
47.
go back to reference M.H. Tahersima, M. Danang Birowosuto, Z. Ma, W.C. Coley, M. Valentin, I. Lu, K. Liu, Y. Zhou, A. Martinez et al., Testbeds for transition metal dichalcogenide photonics: efficacy of light emission enhancement in monomer vs dimer nanoscale antennas. ACS Photonics 4, 1713–1721 (2017)CrossRef M.H. Tahersima, M. Danang Birowosuto, Z. Ma, W.C. Coley, M. Valentin, I. Lu, K. Liu, Y. Zhou, A. Martinez et al., Testbeds for transition metal dichalcogenide photonics: efficacy of light emission enhancement in monomer vs dimer nanoscale antennas. ACS Photonics 4, 1713–1721 (2017)CrossRef
48.
go back to reference M. Tahersima, V.J. Sorger, Enhanced photon absorption in spiral nanostructured solar cells using layered 2-D materials. Nanotechnology 26, 344005 (2015)CrossRef M. Tahersima, V.J. Sorger, Enhanced photon absorption in spiral nanostructured solar cells using layered 2-D materials. Nanotechnology 26, 344005 (2015)CrossRef
49.
go back to reference R. Maiti, C. Patil, T. Xie, J. Ghasemi, M.A.S.R. Saadi, R. Amin, M. Miscuglio, D. Van Thourhout, S.D. Solares, T. Low, R. Agarwal, S. Bank, V.J. Sorger, Strain-engineered integrated MoTe2 photodetector for high responsivity at 1.55 μm. Nat. Photonics 14(9), 578–584 (2020)CrossRef R. Maiti, C. Patil, T. Xie, J. Ghasemi, M.A.S.R. Saadi, R. Amin, M. Miscuglio, D. Van Thourhout, S.D. Solares, T. Low, R. Agarwal, S. Bank, V.J. Sorger, Strain-engineered integrated MoTe2 photodetector for high responsivity at 1.55 μm. Nat. Photonics 14(9), 578–584 (2020)CrossRef
50.
go back to reference V.J. Sorger, R. Maiti, Roadmap for gain-bandwidth-product enhanced photodetectors. Opt. Mater. Express 10(9), 2192–2200 (2020)CrossRef V.J. Sorger, R. Maiti, Roadmap for gain-bandwidth-product enhanced photodetectors. Opt. Mater. Express 10(9), 2192–2200 (2020)CrossRef
51.
go back to reference Y. Gui, M. Miscuglio, Z. Ma, M.T. Tahersima, V.J. Sorger, Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide. Nat. Sci. Rep. 9(1), 1–10 (2019) Y. Gui, M. Miscuglio, Z. Ma, M.T. Tahersima, V.J. Sorger, Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide. Nat. Sci. Rep. 9(1), 1–10 (2019)
52.
go back to reference Z. Ma, Z. Li, K. Liu, C. Ye, V.J. Sorger, Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 4(1), 198–213 (2015)CrossRef Z. Ma, Z. Li, K. Liu, C. Ye, V.J. Sorger, Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 4(1), 198–213 (2015)CrossRef
53.
go back to reference R. Amin, J.B. Khurgin, V.J. Sorger, Waveguide-based electro-absorption modulator performance: comparative analysis. Opt. Express 26(11), 15445–15470 (2018)CrossRef R. Amin, J.B. Khurgin, V.J. Sorger, Waveguide-based electro-absorption modulator performance: comparative analysis. Opt. Express 26(11), 15445–15470 (2018)CrossRef
54.
go back to reference V.J. Sorger, R. Amin, J.B. Khurgin, Z. Ma, S. Khan, Scaling vectors for Atto-Joule per bit modulators. J. Opt. 20, 014012 (2018)CrossRef V.J. Sorger, R. Amin, J.B. Khurgin, Z. Ma, S. Khan, Scaling vectors for Atto-Joule per bit modulators. J. Opt. 20, 014012 (2018)CrossRef
55.
go back to reference C. Ye, S. Khan, Z.R. Li, E. Simsek, V.J. Sorger, λ-Size ITO and graphene-based electro-optic modulators on SOI. IEEE J. Sel. Top. Quantum Electron. 4, 20 (2014) C. Ye, S. Khan, Z.R. Li, E. Simsek, V.J. Sorger, λ-Size ITO and graphene-based electro-optic modulators on SOI. IEEE J. Sel. Top. Quantum Electron. 4, 20 (2014)
56.
go back to reference S.K. Pickus, S. Khan, C. Ye, Z. Li, V.J. Sorger, Silicon plasmon modulators: breaking photonic limits. IEEE Photonics Soc. 27, 6 (2013) S.K. Pickus, S. Khan, C. Ye, Z. Li, V.J. Sorger, Silicon plasmon modulators: breaking photonic limits. IEEE Photonics Soc. 27, 6 (2013)
57.
go back to reference V.J. Sorger, D. Kimura, R.-M. Ma, X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1(1), 17–22 (2012)CrossRef V.J. Sorger, D. Kimura, R.-M. Ma, X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1(1), 17–22 (2012)CrossRef
58.
go back to reference C. Huang, S. Pickus, R. Lamond, Z. Li et al., A sub-λ size modulator beyond the efficiency-loss limit. IEEE Photonics J. 5, 4 (2013) C. Huang, S. Pickus, R. Lamond, Z. Li et al., A sub-λ size modulator beyond the efficiency-loss limit. IEEE Photonics J. 5, 4 (2013)
59.
go back to reference M.H. Tahersima, Z. Ma, Y. Gui, S. Sun, H. Wang, R. Amin, H. Dalir, R. Chen, M. Miscuglio, V.J. Sorger, Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics. Nanophotonics 8, 9 (2019)CrossRef M.H. Tahersima, Z. Ma, Y. Gui, S. Sun, H. Wang, R. Amin, H. Dalir, R. Chen, M. Miscuglio, V.J. Sorger, Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics. Nanophotonics 8, 9 (2019)CrossRef
60.
go back to reference R. Amin, R. Maiti, C. Carfano, Z. Ma, M.H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, V.J. Sorger, 0.52 V-mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics 3(12), 126104 (2018)CrossRef R. Amin, R. Maiti, C. Carfano, Z. Ma, M.H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, V.J. Sorger, 0.52 V-mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics 3(12), 126104 (2018)CrossRef
61.
go back to reference R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, R.T. Chen, H. Dalir et al., Broadband sub-λ GHz ITO plasmonic Mach-Zehnder modulator on silicon photonics. Optica 7, 3 (2020)CrossRef R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, R.T. Chen, H. Dalir et al., Broadband sub-λ GHz ITO plasmonic Mach-Zehnder modulator on silicon photonics. Optica 7, 3 (2020)CrossRef
62.
go back to reference R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, J.B. Khurgin, R.T. Chen, H. Dalir, et al., Heterogeneously integrated ITO plasmonic Mach-Zehnder interferometric modulator on SOI. arXiv: 12007:5457 R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, J.B. Khurgin, R.T. Chen, H. Dalir, et al., Heterogeneously integrated ITO plasmonic Mach-Zehnder interferometric modulator on SOI. arXiv: 12007:5457
63.
go back to reference C. Ye, K. Liu, R. Soref et al., A compact plasmonic MOS-based 2x2 electro-optic switch. Nanophotonics 4(3), 261–268 (2015)CrossRef C. Ye, K. Liu, R. Soref et al., A compact plasmonic MOS-based 2x2 electro-optic switch. Nanophotonics 4(3), 261–268 (2015)CrossRef
64.
go back to reference R. Amin, J. George, S. Sun, T. Ferreira de Lima, A.N. Tait, J. Khurgin et al., ITO-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019)CrossRef R. Amin, J. George, S. Sun, T. Ferreira de Lima, A.N. Tait, J. Khurgin et al., ITO-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019)CrossRef
65.
go back to reference M. Miscuglio, X. Ma, T. El-Ghazawi, T. Itoh, A. Alu, et al., Analog computing with metatronic circuits. arXiv preprint: 2007.05380 M. Miscuglio, X. Ma, T. El-Ghazawi, T. Itoh, A. Alu, et al., Analog computing with metatronic circuits. arXiv preprint: 2007.05380
66.
go back to reference R. Amin, R. Maiti, J.K. George, X. Ma, Z. Ma, H. Dalir et al., A lateral MOS-capacitor enabled ITO Mach-Zehnder modulator for beam steering. J. Lightwave Technol. 38(2), 282–290 (2019)CrossRef R. Amin, R. Maiti, J.K. George, X. Ma, Z. Ma, H. Dalir et al., A lateral MOS-capacitor enabled ITO Mach-Zehnder modulator for beam steering. J. Lightwave Technol. 38(2), 282–290 (2019)CrossRef
Metadata
Title
Structural, electrical, and optical properties of ITO thin films and their influence on performance of CdS/CdTe thin-film solar cells
Authors
Moustafa Ahmed
Ahmed Bakry
Essam R. Shaaban
Hamed Dalir
Publication date
01-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05777-x

Other articles of this Issue 8/2021

Journal of Materials Science: Materials in Electronics 8/2021 Go to the issue