Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 1/2017

22-08-2016

Structural, optical, photocurrent and mechanism-induced photocatalytic properties of surface-modified ZnS thin films by chemical bath deposition

Authors: Yangyang Li, Zhao Liu, Shuwang Duo, Ruifang Zhong, Tingzhi Liu

Published in: Journal of Materials Science: Materials in Electronics | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

ZnS thin films were prepared by chemical bath codeposition using ZnSO4–ZnCl2 or Zn(CH3COO)2–ZnCl2 as zinc ion sources. The presence of SO4 2− favors the heterogeneous growth of ZnS thin film. The coexistence of two zinc salts impedes the formation of homogeneous precipitation and improves the growth rate of ZnS film. XRD and HRTEM results show that all the samples exhibit the cubic structure. EDS analysis shows that Zn/S atom ratios from the codeposition are closer to 1:1 than those deposited from a single zinc salt, and ZnS thin films of S3 and S7 are very uniform without stirring. FTIR reveals that –NH2 group as a surface modifier is adsorbed on the surface of ZnS nanoparticles. Raman spectra further reveal that S3, S4 and S7 form the ZnS films, and ZnO phase is present in short or middle range of the S6 nanocrystal, indicating that different amounts of zinc salts affect the structure of ZnS films significantly after three 2.5 h deposition cycles. The grain sizes determined by FESEM are inversely proportional to RMS determined by AFM. The band gap values of ZnS thin films agree well with the results of HRTEM. The photocurrent responses of different samples are similar, indicating that different amounts of zinc salts have little effect on the photocurrent of ZnS films. The photocatalytic performance of S6 and S8 is much better than that of S1–S5. S6 decomposes 65 % of methyl orange within 3 h, and its K value is 4.78 × 10−1 h−1. The photocatalytic performance is induced by the growth mechanism, which determines the grain size of ZnS thin film. The tendency of grain sizes of ZnS films agrees well with that of photocatalytic performance, especially under the clusters by clusters deposition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Lu, W.P. Cai, Y.G. Zhang, Y. Li, F.Q. Sun, Fabrication and field-emission performance of zinc sulfide nanobelt arrays. J. Phys. Chem. C 111, 13385–13392 (2007)CrossRef F. Lu, W.P. Cai, Y.G. Zhang, Y. Li, F.Q. Sun, Fabrication and field-emission performance of zinc sulfide nanobelt arrays. J. Phys. Chem. C 111, 13385–13392 (2007)CrossRef
2.
go back to reference K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen. Mater. Chem. Phys. 82, 718–725 (2003)CrossRef K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen. Mater. Chem. Phys. 82, 718–725 (2003)CrossRef
3.
go back to reference Y. Zhang, X.Y. Dang, J. Jin, T. Yu, B.Z. Li, Q. He, F.Y. Li, Y. Sun, ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds. Appl. Surf. Sci. 256, 6871–6875 (2010)CrossRef Y. Zhang, X.Y. Dang, J. Jin, T. Yu, B.Z. Li, Q. He, F.Y. Li, Y. Sun, ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds. Appl. Surf. Sci. 256, 6871–6875 (2010)CrossRef
4.
go back to reference Y. Liao, F. Yu, L. Long, B. Wei, L. Lu, J. Zhang, Low-cost and reliable thin film encapsulation for organic light emitting diodes using magnesium fluoride and zinc sulfide. Thin Solid Films 519, 2344–2348 (2011)CrossRef Y. Liao, F. Yu, L. Long, B. Wei, L. Lu, J. Zhang, Low-cost and reliable thin film encapsulation for organic light emitting diodes using magnesium fluoride and zinc sulfide. Thin Solid Films 519, 2344–2348 (2011)CrossRef
5.
go back to reference W. Daranfed, M.S. Aida, A. Hafdallah, H. Lekiket, Substrate temperature influence on ZnS thin films prepared by ultrasonic spray. Thin Solid Films 518(4), 1082–1084 (2009)CrossRef W. Daranfed, M.S. Aida, A. Hafdallah, H. Lekiket, Substrate temperature influence on ZnS thin films prepared by ultrasonic spray. Thin Solid Films 518(4), 1082–1084 (2009)CrossRef
6.
go back to reference P. Roy, J.R. Ota, S.K. Srivastava, Crystalline ZnS thin films by chemical bath deposition method and its characterization. Thin Solid Films 515, 1912–1917 (2006)CrossRef P. Roy, J.R. Ota, S.K. Srivastava, Crystalline ZnS thin films by chemical bath deposition method and its characterization. Thin Solid Films 515, 1912–1917 (2006)CrossRef
7.
go back to reference C.M. Huang, L.C. Chen, G.T. Pan, T.C.K. Yang, W.S. Chang, K.W. Cheng, Effect of Ni on the growth and photoelectrochemical properties of ZnS thin films. Mater. Chem. Phys. 117, 156–162 (2009)CrossRef C.M. Huang, L.C. Chen, G.T. Pan, T.C.K. Yang, W.S. Chang, K.W. Cheng, Effect of Ni on the growth and photoelectrochemical properties of ZnS thin films. Mater. Chem. Phys. 117, 156–162 (2009)CrossRef
8.
go back to reference S.M.B. Ghorashi, A. Behjat, M. Neghabi, G. Mirjalili, Effects of air annealing on the optical, electrical, and structural properties of nanostructured ZnS/Au/ZnS films. Appl. Surf. Sci. 257, 1602–1606 (2010)CrossRef S.M.B. Ghorashi, A. Behjat, M. Neghabi, G. Mirjalili, Effects of air annealing on the optical, electrical, and structural properties of nanostructured ZnS/Au/ZnS films. Appl. Surf. Sci. 257, 1602–1606 (2010)CrossRef
9.
go back to reference X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175–287 (2011)CrossRef X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175–287 (2011)CrossRef
10.
go back to reference X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi, B. Dierre, B.D. Liu, T.Y. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 21, 2034–2039 (2009)CrossRef X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi, B. Dierre, B.D. Liu, T.Y. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 21, 2034–2039 (2009)CrossRef
11.
go back to reference X.S. Fang, Y. Bando, M.Y. Liao, T.Y. Zhai, U.K. Gautam, L. Li, Y. Koide, D. Golberg, An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Funct. Mater. 20, 500–508 (2010)CrossRef X.S. Fang, Y. Bando, M.Y. Liao, T.Y. Zhai, U.K. Gautam, L. Li, Y. Koide, D. Golberg, An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Funct. Mater. 20, 500–508 (2010)CrossRef
12.
go back to reference M. Stefan, E.J. Popovici, O. Pana, E. Indrea, Synthesis of luminescent zinc sulphide thin films by chemical bath deposition. J. Alloys Compd. 548, 166–172 (2013)CrossRef M. Stefan, E.J. Popovici, O. Pana, E. Indrea, Synthesis of luminescent zinc sulphide thin films by chemical bath deposition. J. Alloys Compd. 548, 166–172 (2013)CrossRef
13.
go back to reference J.M. Doña, J. Herrero, Process and film characterization of chemical-bath-deposited ZnS thin film. J. Electrochem. Soc. 141, 205–210 (1994)CrossRef J.M. Doña, J. Herrero, Process and film characterization of chemical-bath-deposited ZnS thin film. J. Electrochem. Soc. 141, 205–210 (1994)CrossRef
14.
go back to reference S. Siebentritt, Alternative buffers for chalcopyrite solar cells. Sol. Energy 77, 767–775 (2004)CrossRef S. Siebentritt, Alternative buffers for chalcopyrite solar cells. Sol. Energy 77, 767–775 (2004)CrossRef
15.
go back to reference U. Gangopadhyay, K. Kim, D. Mangalaraj, J. Yi, Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci. 230, 364–370 (2004)CrossRef U. Gangopadhyay, K. Kim, D. Mangalaraj, J. Yi, Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci. 230, 364–370 (2004)CrossRef
16.
go back to reference J. Cheng, D.B. Fan, H. Wang, B.W. Liu, Y.C. Zhang, H. Yan, Chemical bath deposition of crystalline ZnS thin films. Semicond. Sci. Technol. 18, 676–679 (2003)CrossRef J. Cheng, D.B. Fan, H. Wang, B.W. Liu, Y.C. Zhang, H. Yan, Chemical bath deposition of crystalline ZnS thin films. Semicond. Sci. Technol. 18, 676–679 (2003)CrossRef
17.
go back to reference R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65, 1–31 (2000)CrossRef R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65, 1–31 (2000)CrossRef
18.
go back to reference E.J. Ibanga, C.L. Luyer, J. Mugnier, Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films. Mater. Chem. Phys. 80, 490–495 (2003)CrossRef E.J. Ibanga, C.L. Luyer, J. Mugnier, Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films. Mater. Chem. Phys. 80, 490–495 (2003)CrossRef
19.
go back to reference J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993)CrossRef J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993)CrossRef
20.
go back to reference J.M. Doña, J. Herrero, Chemical bath codeposited CdS-ZnS film characterization. Thin Solid Films 268, 5–12 (1995)CrossRef J.M. Doña, J. Herrero, Chemical bath codeposited CdS-ZnS film characterization. Thin Solid Films 268, 5–12 (1995)CrossRef
21.
go back to reference J. Vidal, O. Vigil, O. de Melo, N. Lopez, O.Z. Angel, Influence of NH3 concentration and annealing in the properties of chemical bath deposited ZnS films. Mater. Chem. Phys. 61, 139–142 (1999)CrossRef J. Vidal, O. Vigil, O. de Melo, N. Lopez, O.Z. Angel, Influence of NH3 concentration and annealing in the properties of chemical bath deposited ZnS films. Mater. Chem. Phys. 61, 139–142 (1999)CrossRef
22.
go back to reference Q. Liu, G.B. Mao, J.P. Ao, Chemical bath-deposited ZnS thin films: preparation and characterization. Appl. Surf. Sci. 254, 5711–5714 (2008)CrossRef Q. Liu, G.B. Mao, J.P. Ao, Chemical bath-deposited ZnS thin films: preparation and characterization. Appl. Surf. Sci. 254, 5711–5714 (2008)CrossRef
23.
go back to reference B. Asenjo, A.M. Chaparro, M.T. Gutiérrez, J. Herrero, J. Klaer, Study of CuInS2/ZnS/ZnO solar cells, with chemically deposited ZnS buffer layers from acidic solutions. Sol. Energy Mater. Sol. Cells 92, 302–306 (2008)CrossRef B. Asenjo, A.M. Chaparro, M.T. Gutiérrez, J. Herrero, J. Klaer, Study of CuInS2/ZnS/ZnO solar cells, with chemically deposited ZnS buffer layers from acidic solutions. Sol. Energy Mater. Sol. Cells 92, 302–306 (2008)CrossRef
24.
go back to reference H. Ke, S.W. Duo, T.Z. Liu, Q. Sun, C.X. Ruan, X.Y. Fei, J.L. Tan, S. Zhan, Effect of temperature on structural and optical properties of ZnS thin films by chemical bath deposition without stirring the reaction bath. Mater. Sci. Semicond. Process. 18, 28–35 (2014)CrossRef H. Ke, S.W. Duo, T.Z. Liu, Q. Sun, C.X. Ruan, X.Y. Fei, J.L. Tan, S. Zhan, Effect of temperature on structural and optical properties of ZnS thin films by chemical bath deposition without stirring the reaction bath. Mater. Sci. Semicond. Process. 18, 28–35 (2014)CrossRef
25.
go back to reference A.X. Wei, J. Liu, M.X. Zhuang, Y. Zhao, Preparation and characterization of ZnS thin films prepared by chemical bath deposition. Mater. Sci. Semicond. Process. 16, 1478–1484 (2013)CrossRef A.X. Wei, J. Liu, M.X. Zhuang, Y. Zhao, Preparation and characterization of ZnS thin films prepared by chemical bath deposition. Mater. Sci. Semicond. Process. 16, 1478–1484 (2013)CrossRef
26.
go back to reference T.B. Nasr, N. Kamoun, C. Guasch, Physical properties of ZnS thin films prepared by chemical bath deposition. Appl. Surf. Sci. 254, 5039–5043 (2008)CrossRef T.B. Nasr, N. Kamoun, C. Guasch, Physical properties of ZnS thin films prepared by chemical bath deposition. Appl. Surf. Sci. 254, 5039–5043 (2008)CrossRef
27.
go back to reference W. Vallejo, M. Hurtado, G. Gordillo, Kinetic study on Zn(O, OH)S thin films deposited by chemical bath deposition. Electrochim. Acta 55, 5610–5616 (2010)CrossRef W. Vallejo, M. Hurtado, G. Gordillo, Kinetic study on Zn(O, OH)S thin films deposited by chemical bath deposition. Electrochim. Acta 55, 5610–5616 (2010)CrossRef
28.
go back to reference W. Vallejo, C. Quińones, G. Gordillo, A comparative study of thin films of Zn(O; OH)S and In(O; OH)S deposited on CuInS2 by chemical bath deposition method. J. Phys. Chem. Solids 73, 573–578 (2012)CrossRef W. Vallejo, C. Quińones, G. Gordillo, A comparative study of thin films of Zn(O; OH)S and In(O; OH)S deposited on CuInS2 by chemical bath deposition method. J. Phys. Chem. Solids 73, 573–578 (2012)CrossRef
29.
go back to reference A. Antony, K.V. Murali, R. Manoj, M.K. Jayaraj, The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films. Mater. Chem. Phys. 90, 106–110 (2005)CrossRef A. Antony, K.V. Murali, R. Manoj, M.K. Jayaraj, The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films. Mater. Chem. Phys. 90, 106–110 (2005)CrossRef
30.
go back to reference P.A. Luque, C.M.G. Gutiérrez, G. Lastra, A.C. Castillo, M.A.Q. López, A. Olivas, Role of zinc source in chemical bath deposition of zinc sulfide thin films on Si3N4. J. Electron. Mater. 43, 4317–4321 (2014)CrossRef P.A. Luque, C.M.G. Gutiérrez, G. Lastra, A.C. Castillo, M.A.Q. López, A. Olivas, Role of zinc source in chemical bath deposition of zinc sulfide thin films on Si3N4. J. Electron. Mater. 43, 4317–4321 (2014)CrossRef
31.
go back to reference M. Cao, B.L. Zhang, L. Li, J. Huang, S.R. Zhao, H. Cao, J.C. Jiang, Y. Sun, Y. Shen, Effects of zinc salts on the structural and optical properties of acidic chemical bath deposited ZnS thin films. Mater. Res. Bull. 48, 357–361 (2013)CrossRef M. Cao, B.L. Zhang, L. Li, J. Huang, S.R. Zhao, H. Cao, J.C. Jiang, Y. Sun, Y. Shen, Effects of zinc salts on the structural and optical properties of acidic chemical bath deposited ZnS thin films. Mater. Res. Bull. 48, 357–361 (2013)CrossRef
32.
go back to reference T.Z. Liu, H. Ke, H. Zhang, S.W. Duo, Q. Sun, X.Y. Fei, G.Y. Zhou, H. Liu, L.J. Fan, Effect of four different zinc salts and annealing treatment on growth, structural, mechanical and optical properties of nanocrystalline ZnS thin films by chemical bath deposition. Mater. Sci. Semicond. Process. 26, 301–311 (2014)CrossRef T.Z. Liu, H. Ke, H. Zhang, S.W. Duo, Q. Sun, X.Y. Fei, G.Y. Zhou, H. Liu, L.J. Fan, Effect of four different zinc salts and annealing treatment on growth, structural, mechanical and optical properties of nanocrystalline ZnS thin films by chemical bath deposition. Mater. Sci. Semicond. Process. 26, 301–311 (2014)CrossRef
33.
go back to reference T.Z. Liu, Y.Y. Li, H. Ke, Y.H. Qian, S.W. Duo, Y.L. Hong, X.Y. Sun, Chemical bath co-deposited ZnS film prepared from different zinc salts: ZnSO4–Zn(CH3COO)2, Zn(NO3)2–Zn(CH3COO)2, and ZnSO4–Zn(NO3)2. J. Mater. Sci. Technol. 32, 207–217 (2016)CrossRef T.Z. Liu, Y.Y. Li, H. Ke, Y.H. Qian, S.W. Duo, Y.L. Hong, X.Y. Sun, Chemical bath co-deposited ZnS film prepared from different zinc salts: ZnSO4–Zn(CH3COO)2, Zn(NO3)2–Zn(CH3COO)2, and ZnSO4–Zn(NO3)2. J. Mater. Sci. Technol. 32, 207–217 (2016)CrossRef
34.
go back to reference K. Kočí, L. Matějová, O. Kozák, L. Čapek, V. Valeš, M. Reli, P. Praus, K. Safářová, A. Kotarba, L. Obalová, ZnS/MMT nanocomposites: the effect of ZnS loading in MMT on the photocatalytic reduction of carbon dioxide. Appl. Catal. B Environ. 158–159, 410–417 (2014) K. Kočí, L. Matějová, O. Kozák, L. Čapek, V. Valeš, M. Reli, P. Praus, K. Safářová, A. Kotarba, L. Obalová, ZnS/MMT nanocomposites: the effect of ZnS loading in MMT on the photocatalytic reduction of carbon dioxide. Appl. Catal. B Environ. 158–159, 410–417 (2014)
35.
go back to reference X.J. Xu, L.F. Hu, N. Gao, S.X. Liu, S. Wageh, A.A.A. Ghamdi, A. Alshahrie, X.S. Fang, Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv. Funct. Mater. 25, 445–454 (2015)CrossRef X.J. Xu, L.F. Hu, N. Gao, S.X. Liu, S. Wageh, A.A.A. Ghamdi, A. Alshahrie, X.S. Fang, Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv. Funct. Mater. 25, 445–454 (2015)CrossRef
36.
go back to reference C. Lu, C.Z. Liu, R. Chen, X.X. Fang, K. Xu, D.W. Meng, Synthesis and characterization of ZnO/ZnS/CuS ternary nanocomposites as high efficient photocatalyst in visible light. J. Mater. Sci. Mater. Electron. 27, 6947–6954 (2016)CrossRef C. Lu, C.Z. Liu, R. Chen, X.X. Fang, K. Xu, D.W. Meng, Synthesis and characterization of ZnO/ZnS/CuS ternary nanocomposites as high efficient photocatalyst in visible light. J. Mater. Sci. Mater. Electron. 27, 6947–6954 (2016)CrossRef
37.
go back to reference Y. Tian, G.F. Huang, L.J. Tang, M.G. Xia, W.Q. Huang, Z.L. Ma, Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Mater. Lett. 83, 104–107 (2012)CrossRef Y. Tian, G.F. Huang, L.J. Tang, M.G. Xia, W.Q. Huang, Z.L. Ma, Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Mater. Lett. 83, 104–107 (2012)CrossRef
38.
go back to reference Y. Chen, G.F. Huang, W.Q. Huang, L.L. Wang, Y. Tian, Z.L. Ma, Z.M. Yang, Annealing effects on photocatalytic activity of ZnS films prepared by chemical bath deposition. Mater. Lett. 75, 221–224 (2012)CrossRef Y. Chen, G.F. Huang, W.Q. Huang, L.L. Wang, Y. Tian, Z.L. Ma, Z.M. Yang, Annealing effects on photocatalytic activity of ZnS films prepared by chemical bath deposition. Mater. Lett. 75, 221–224 (2012)CrossRef
39.
go back to reference Y. Chen, G.F. Huang, W.Q. Huang, B.S. Zou, A. Pan, Enhanced visible-light photoactivity of La-doped ZnS thin films. Appl. phys. A Mater. 108, 895–900 (2012)CrossRef Y. Chen, G.F. Huang, W.Q. Huang, B.S. Zou, A. Pan, Enhanced visible-light photoactivity of La-doped ZnS thin films. Appl. phys. A Mater. 108, 895–900 (2012)CrossRef
40.
go back to reference Y.F. Chai, G.F. Huang, L.L. Wang, W.Q. Huang, J. Zhou, Enhanced photocatalytic activity and stability of ZnxCd1−xS/TiO2 nanocomposites synthesized by chemical bath deposition. Mater. Lett. 142, 133–136 (2015)CrossRef Y.F. Chai, G.F. Huang, L.L. Wang, W.Q. Huang, J. Zhou, Enhanced photocatalytic activity and stability of ZnxCd1−xS/TiO2 nanocomposites synthesized by chemical bath deposition. Mater. Lett. 142, 133–136 (2015)CrossRef
41.
go back to reference S.D. Sartale, B.R. Sankapal, M.L. Steiner, A. Ennaoui, Preparation of nanocrystalline ZnS by a new chemical bath deposition route. Thin Solid Films 480–481, 168–172 (2005)CrossRef S.D. Sartale, B.R. Sankapal, M.L. Steiner, A. Ennaoui, Preparation of nanocrystalline ZnS by a new chemical bath deposition route. Thin Solid Films 480–481, 168–172 (2005)CrossRef
42.
go back to reference J.A. Dean, Lange’s Handbook of Chemistry, 13th edn. (McGraw-Hill Book Company, New York, 1987), p. 5 J.A. Dean, Lange’s Handbook of Chemistry, 13th edn. (McGraw-Hill Book Company, New York, 1987), p. 5
43.
go back to reference P. Roy, S.K. Srivastava, A new approach towards the growth of cadmium sulphide thin film by CBD method and its characterization. Mater. Chem. Phys. 95, 235–241 (2006)CrossRef P. Roy, S.K. Srivastava, A new approach towards the growth of cadmium sulphide thin film by CBD method and its characterization. Mater. Chem. Phys. 95, 235–241 (2006)CrossRef
44.
go back to reference D.A. Johnston, M.H. Carletto, K.T.R. Reddy, I. Forbes, R.W. Miles, Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials. Thin Solid Films 403–404, 102–106 (2002)CrossRef D.A. Johnston, M.H. Carletto, K.T.R. Reddy, I. Forbes, R.W. Miles, Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials. Thin Solid Films 403–404, 102–106 (2002)CrossRef
45.
go back to reference D. Lincot, R.O. Borges, Chemical Bath deposition of cadmium sulfide thin films. In situ growth and structural studies by combined quartz crystal microbalance and electrochemical impedance techniques. J. Electrochem. Soc. 139, 1880–1889 (1992)CrossRef D. Lincot, R.O. Borges, Chemical Bath deposition of cadmium sulfide thin films. In situ growth and structural studies by combined quartz crystal microbalance and electrochemical impedance techniques. J. Electrochem. Soc. 139, 1880–1889 (1992)CrossRef
46.
go back to reference W.L. Liu, C.S. Yang, S.H. Hsieh, W.J. Chen, C.L. Fern, Effect of deposition variables on properties of CBD ZnS thin films prepared in chemical bath of ZnSO4/SC(NH2)2/Na3C3H5O7/NH4OH. Appl. Surf. Sci. 264, 213–218 (2013)CrossRef W.L. Liu, C.S. Yang, S.H. Hsieh, W.J. Chen, C.L. Fern, Effect of deposition variables on properties of CBD ZnS thin films prepared in chemical bath of ZnSO4/SC(NH2)2/Na3C3H5O7/NH4OH. Appl. Surf. Sci. 264, 213–218 (2013)CrossRef
47.
go back to reference A.K. Kole, S. Gupta, P. Kumbhakar, P.C. Ramamurthy, Nonlinear optical second harmonic generation in ZnS quantum dots and observation on optical properties of ZnS/PMMA nanocomposites. Opt. Commun. 313, 231–237 (2014)CrossRef A.K. Kole, S. Gupta, P. Kumbhakar, P.C. Ramamurthy, Nonlinear optical second harmonic generation in ZnS quantum dots and observation on optical properties of ZnS/PMMA nanocomposites. Opt. Commun. 313, 231–237 (2014)CrossRef
48.
go back to reference G. Murugadoss, Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. J. Lumin. 131, 2216–2223 (2011)CrossRef G. Murugadoss, Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. J. Lumin. 131, 2216–2223 (2011)CrossRef
49.
go back to reference T.A. Safeera, N. Johns, E.I. Anila, A.I. Martinez, P.V. Sreenivasan, R. Reshmi, M. Sudhanshu, M.K. Jayaraj, Low temperature fabrication and characterization of wurtzite structured ZnS quantum dots by chemical spray pyrolysis. J. Anal. Appl. Pyrol. 115, 96–102 (2015)CrossRef T.A. Safeera, N. Johns, E.I. Anila, A.I. Martinez, P.V. Sreenivasan, R. Reshmi, M. Sudhanshu, M.K. Jayaraj, Low temperature fabrication and characterization of wurtzite structured ZnS quantum dots by chemical spray pyrolysis. J. Anal. Appl. Pyrol. 115, 96–102 (2015)CrossRef
50.
go back to reference X.B. Zhang, H.W. Song, L.X. Yu, T. Wang, X.G. Ren, X.G. Kong, Y.H. Xie, X.J. Wang, Surface states and its influence on luminescence in ZnS nanocrystallite. J. Lumin. 118, 251–256 (2006)CrossRef X.B. Zhang, H.W. Song, L.X. Yu, T. Wang, X.G. Ren, X.G. Kong, Y.H. Xie, X.J. Wang, Surface states and its influence on luminescence in ZnS nanocrystallite. J. Lumin. 118, 251–256 (2006)CrossRef
51.
go back to reference S.N. Azizi, M.J. Chaichi, P. Shakeri, A. Bekhradnia, Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers. J. Lumin. 144, 34–40 (2013)CrossRef S.N. Azizi, M.J. Chaichi, P. Shakeri, A. Bekhradnia, Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers. J. Lumin. 144, 34–40 (2013)CrossRef
52.
go back to reference L.J. Feng, C.Y. Wang, Z.L. Ma, C.L. Lü, 8-Hydroxyquinoline functionalized ZnS nanoparticles capped with amine groups: a fluorescent nanosensor for the facile and sensitive detection of TNT through fluorescence resonance energy transfer. Dyes Pigments 97, 84–91 (2013)CrossRef L.J. Feng, C.Y. Wang, Z.L. Ma, C.L. Lü, 8-Hydroxyquinoline functionalized ZnS nanoparticles capped with amine groups: a fluorescent nanosensor for the facile and sensitive detection of TNT through fluorescence resonance energy transfer. Dyes Pigments 97, 84–91 (2013)CrossRef
53.
go back to reference M. Pal, N.R. Mathews, E.R. Morales, J.M.G. Jiménez, X. Mathew, Synthesis of Eu+3 doped ZnS nanoparticles by a wet chemical route and its characterization. Opt. Mater. 35, 2664–2669 (2013)CrossRef M. Pal, N.R. Mathews, E.R. Morales, J.M.G. Jiménez, X. Mathew, Synthesis of Eu+3 doped ZnS nanoparticles by a wet chemical route and its characterization. Opt. Mater. 35, 2664–2669 (2013)CrossRef
54.
go back to reference D.A. Reddy, C.L. Liu, R.P. Vijayalakshmi, B.K. Reddy, Effect of Al doping on the structural, optical and photoluminescence properties of ZnS nanoparticles. J. Alloys Compd. 582, 257–264 (2014)CrossRef D.A. Reddy, C.L. Liu, R.P. Vijayalakshmi, B.K. Reddy, Effect of Al doping on the structural, optical and photoluminescence properties of ZnS nanoparticles. J. Alloys Compd. 582, 257–264 (2014)CrossRef
55.
go back to reference J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Raman scattering in β-ZnS. Phys. Rev. B 69, 014301 (2004)CrossRef J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Raman scattering in β-ZnS. Phys. Rev. B 69, 014301 (2004)CrossRef
56.
go back to reference S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni doped ZnS nanoparticles. J. Alloys Compd. 554, 357–362 (2013)CrossRef S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni doped ZnS nanoparticles. J. Alloys Compd. 554, 357–362 (2013)CrossRef
57.
go back to reference M. Hossu, R.O. Schaeffer, L. Ma, W. Chen, Y.B. Zhu, R. Sammynaiken, A.G. Joly, On the luminescence enhancement of Mn2+ by co-doping of Eu2+ in ZnS: Mn, Eu. Opt. Mater. 35, 1513–1519 (2013)CrossRef M. Hossu, R.O. Schaeffer, L. Ma, W. Chen, Y.B. Zhu, R. Sammynaiken, A.G. Joly, On the luminescence enhancement of Mn2+ by co-doping of Eu2+ in ZnS: Mn, Eu. Opt. Mater. 35, 1513–1519 (2013)CrossRef
58.
go back to reference R. Cuscó, E.A. Lladó, J. Ibáñez, L. Artús, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202 (2007)CrossRef R. Cuscó, E.A. Lladó, J. Ibáñez, L. Artús, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202 (2007)CrossRef
59.
go back to reference H.X. Li, M.X. Xia, G.Z. Dai, H.C. Yu, Q.L. Zhang, A.L. Pan, T.H. Wang, Y.G. Wang, B.S. Zou, Growth of oriented zinc oxide nanowire array into novel hierarchical structures in aqueous solutions. J. Phys. Chem. C 112, 17546–17553 (2008)CrossRef H.X. Li, M.X. Xia, G.Z. Dai, H.C. Yu, Q.L. Zhang, A.L. Pan, T.H. Wang, Y.G. Wang, B.S. Zou, Growth of oriented zinc oxide nanowire array into novel hierarchical structures in aqueous solutions. J. Phys. Chem. C 112, 17546–17553 (2008)CrossRef
60.
go back to reference S. Kumar, P.D. Sahare, Observation of band gap and surface defects of ZnO nanoparticles synthesized via hydrothermal route at different reaction temperature. Opt. Commun. 285, 5210–5216 (2012)CrossRef S. Kumar, P.D. Sahare, Observation of band gap and surface defects of ZnO nanoparticles synthesized via hydrothermal route at different reaction temperature. Opt. Commun. 285, 5210–5216 (2012)CrossRef
61.
go back to reference X.S. Fang, L.M. Wu, L.F. Hu, ZnS nanostructure arrays: a developing material star. Adv. Mater. 23, 585–598 (2011)CrossRef X.S. Fang, L.M. Wu, L.F. Hu, ZnS nanostructure arrays: a developing material star. Adv. Mater. 23, 585–598 (2011)CrossRef
62.
go back to reference Y. Lei, F.F. Chen, R. Li, J. Xu, A facile solvothermal method to produce graphene–ZnS composites for superior photoelectric applications. Appl. Surf. Sci. 308, 206–210 (2014)CrossRef Y. Lei, F.F. Chen, R. Li, J. Xu, A facile solvothermal method to produce graphene–ZnS composites for superior photoelectric applications. Appl. Surf. Sci. 308, 206–210 (2014)CrossRef
63.
go back to reference L.H. Yu, H. Ruan, Y. Zheng, D.Z. Li, A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. Nanotechnology 24, 375601 (2013)CrossRef L.H. Yu, H. Ruan, Y. Zheng, D.Z. Li, A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. Nanotechnology 24, 375601 (2013)CrossRef
64.
go back to reference M. Sookhakian, Y.M. Amin, R. Zakaria, W.J. Basirun, M.R. Mahmoudian, B.N. Tabrizi, S. Baradaran, M. Azarang, Significantly improved photocurrent response of ZnS-reduced graphene oxide composites. J. Alloys Compd. 632, 201–207 (2015)CrossRef M. Sookhakian, Y.M. Amin, R. Zakaria, W.J. Basirun, M.R. Mahmoudian, B.N. Tabrizi, S. Baradaran, M. Azarang, Significantly improved photocurrent response of ZnS-reduced graphene oxide composites. J. Alloys Compd. 632, 201–207 (2015)CrossRef
65.
go back to reference L.H. Yu, W. Chen, D.Z. Li, J.B. Wang, Y. Shao, M. He, P. Wang, X.Z. Zheng, Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. Appl. Catal. B Environ. 164, 453–461 (2015)CrossRef L.H. Yu, W. Chen, D.Z. Li, J.B. Wang, Y. Shao, M. He, P. Wang, X.Z. Zheng, Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. Appl. Catal. B Environ. 164, 453–461 (2015)CrossRef
66.
go back to reference S.H. Xu, L. Fu, T. Song, H. Pham, A. Yu, F.G. Han, L. Chen, Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram. Int. 41, 4007–4013 (2015)CrossRef S.H. Xu, L. Fu, T. Song, H. Pham, A. Yu, F.G. Han, L. Chen, Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram. Int. 41, 4007–4013 (2015)CrossRef
67.
go back to reference W.Q. Peng, G.V. Cong, S.C. Qu, Z.G. Wang, Synthesis and photoluminescence of ZnS: Cu nanoparticles. Opt. Mater. 29, 313–317 (2006)CrossRef W.Q. Peng, G.V. Cong, S.C. Qu, Z.G. Wang, Synthesis and photoluminescence of ZnS: Cu nanoparticles. Opt. Mater. 29, 313–317 (2006)CrossRef
68.
go back to reference S.S. Kumar, M.A. Khadar, K.G.M. Nair, Analysis of the effect of annealing on the photoluminescence spectra of Cu+ ion implanted ZnS nanoparticles. J. Lumin. 131, 786–789 (2011)CrossRef S.S. Kumar, M.A. Khadar, K.G.M. Nair, Analysis of the effect of annealing on the photoluminescence spectra of Cu+ ion implanted ZnS nanoparticles. J. Lumin. 131, 786–789 (2011)CrossRef
69.
go back to reference S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, V.P.M. Pillai, Influence of argon ambience on the structural, morphological and optical properties of pulsed laser ablated zinc sulfide thin films. J. Lumin. 132, 944–952 (2012)CrossRef S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, V.P.M. Pillai, Influence of argon ambience on the structural, morphological and optical properties of pulsed laser ablated zinc sulfide thin films. J. Lumin. 132, 944–952 (2012)CrossRef
70.
go back to reference T.R. Giraldi, G.V.F. Santos, V.R. Mendonca, C. Ribeiro, I.T. Weber, Annealing effects on the photocatalytic activity of ZnO nanoparticles. J. Nanosci. Nanotechnol. 11, 3635–3640 (2011)CrossRef T.R. Giraldi, G.V.F. Santos, V.R. Mendonca, C. Ribeiro, I.T. Weber, Annealing effects on the photocatalytic activity of ZnO nanoparticles. J. Nanosci. Nanotechnol. 11, 3635–3640 (2011)CrossRef
Metadata
Title
Structural, optical, photocurrent and mechanism-induced photocatalytic properties of surface-modified ZnS thin films by chemical bath deposition
Authors
Yangyang Li
Zhao Liu
Shuwang Duo
Ruifang Zhong
Tingzhi Liu
Publication date
22-08-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 1/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5489-y

Other articles of this Issue 1/2017

Journal of Materials Science: Materials in Electronics 1/2017 Go to the issue