Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2023

01-03-2023

Structural optimization of the ionized gas sensor based on carbon nanotubes

Authors: Zhenzhen Cheng, Yunde Xu, Guofeng He

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The industrial application of the ionized gas sensor based on carbon nanotubes (CNTs) is limited by its small collecting current. This paper built a model to simulate the electrostatic field and the gas ionization process of the ionized sensor based on CNTs. As suggested by the simulation result, an optimized structure of the CNT-based gas sensor with a high collecting current was designed. The optimized sensor structure facilitates the collection of positive ions, increasing the collecting current. The feasibility of the simulation model and the simulation results of the sensor's structure optimization was verified through experiments at different voltages in N2. The collecting current of the sensor with the optimized structure is more significant than that of the one with the other structure. The findings of this study provide an effective method for researching nanodevices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Singleton, L. Kulinsky, Fabrication of carbon nanotube gas sensor using stepwise dielectrophoretic deposition onto interdigitated pyrolyzed carbon electrodes. J. Micro Nano-Manuf. 9(3), 030901 (2021)CrossRef T. Singleton, L. Kulinsky, Fabrication of carbon nanotube gas sensor using stepwise dielectrophoretic deposition onto interdigitated pyrolyzed carbon electrodes. J. Micro Nano-Manuf. 9(3), 030901 (2021)CrossRef
2.
go back to reference C. Liu, J. Hu, G. Wu et al., Carbon nanotube-based field-effect transistor-type sensor with a sensing gate for ppb-level formaldehyde detection. ACS Appl. Mater. Interfaces 13(47), 56309–56319 (2021)CrossRef C. Liu, J. Hu, G. Wu et al., Carbon nanotube-based field-effect transistor-type sensor with a sensing gate for ppb-level formaldehyde detection. ACS Appl. Mater. Interfaces 13(47), 56309–56319 (2021)CrossRef
3.
go back to reference M. Zhang, S. Inoue, Y. Matsumura et al., Difference in gas-sensing behavior of multi-walled carbon nanotube-paper-based gas sensor to polar and non-polar organic solvents. Chem. Phys. Lett. 798, 139596 (2022)CrossRef M. Zhang, S. Inoue, Y. Matsumura et al., Difference in gas-sensing behavior of multi-walled carbon nanotube-paper-based gas sensor to polar and non-polar organic solvents. Chem. Phys. Lett. 798, 139596 (2022)CrossRef
4.
go back to reference S. Abbas, W.H. Yi, S. Yoo et al., Highly efficient response of ammonia gas sensor based on surfactant-free sorted-semiconducting single-walled carbon nanotubes at room temperature. Phys. Status Solidi A 219(7), 2100529 (2022)CrossRef S. Abbas, W.H. Yi, S. Yoo et al., Highly efficient response of ammonia gas sensor based on surfactant-free sorted-semiconducting single-walled carbon nanotubes at room temperature. Phys. Status Solidi A 219(7), 2100529 (2022)CrossRef
5.
go back to reference S. Abbas, W. Yi, S. Yoo et al., Highly efficient response of ammonia gas sensor based on surfactant-free sorted-semiconducting single-walled carbon nanotubes at room temperature. Phys. Status Solidi A 219, 2100529 (2022)CrossRef S. Abbas, W. Yi, S. Yoo et al., Highly efficient response of ammonia gas sensor based on surfactant-free sorted-semiconducting single-walled carbon nanotubes at room temperature. Phys. Status Solidi A 219, 2100529 (2022)CrossRef
6.
go back to reference Z. Ahmad, S.M. Naseem et al., Self-standing MWCNTs based gas sensor for detection of environmental limit of CO2. Mater. Sci. Eng. 255, 114528 (2020)CrossRef Z. Ahmad, S.M. Naseem et al., Self-standing MWCNTs based gas sensor for detection of environmental limit of CO2. Mater. Sci. Eng. 255, 114528 (2020)CrossRef
7.
go back to reference M.N. Norizan, M.H. Moklis, S.Z.N. Demon et al., Carbon nanotubes: functionalization and their application in chemical sensors. RSC Adv. 10, 43704 (2020)CrossRef M.N. Norizan, M.H. Moklis, S.Z.N. Demon et al., Carbon nanotubes: functionalization and their application in chemical sensors. RSC Adv. 10, 43704 (2020)CrossRef
8.
go back to reference S. Forel, L. Sacco, A. Castan et al., Simple and rapid gas sensing using a single-walled carbon nanotube field effect transistor-based logic inverter. Nanoscale Adv. 3, 1582–1587 (2021)CrossRef S. Forel, L. Sacco, A. Castan et al., Simple and rapid gas sensing using a single-walled carbon nanotube field effect transistor-based logic inverter. Nanoscale Adv. 3, 1582–1587 (2021)CrossRef
9.
go back to reference P. Molla-Abbasi, Organic compound gas detector based on polylactic acid/poly (styrene-co-acrylonitrile)/multi-walled carbon nanotube blend composite with co-continuous microstructure. Polym. Adv. Technol. 33(3), 760–769 (2022)CrossRef P. Molla-Abbasi, Organic compound gas detector based on polylactic acid/poly (styrene-co-acrylonitrile)/multi-walled carbon nanotube blend composite with co-continuous microstructure. Polym. Adv. Technol. 33(3), 760–769 (2022)CrossRef
10.
go back to reference Y. Kang, D.H. Baek, S. Pyo et al., Carbon-doped WO3 nanostructure based on CNT sacrificial template and its application to highly sensitive NO2 sensor. IEEE Sens. J. 20(11), 5705–5711 (2020)CrossRef Y. Kang, D.H. Baek, S. Pyo et al., Carbon-doped WO3 nanostructure based on CNT sacrificial template and its application to highly sensitive NO2 sensor. IEEE Sens. J. 20(11), 5705–5711 (2020)CrossRef
11.
go back to reference M. Inaba, T. Oda, M. Kono et al., Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly. Sens. Actuators, B 344, 130257 (2021)CrossRef M. Inaba, T. Oda, M. Kono et al., Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly. Sens. Actuators, B 344, 130257 (2021)CrossRef
12.
go back to reference J.K. Kim, M. Han, Y. Kim et al., Pd-decorated multi-walled carbon nanotube sensor for hydrogen detection. J. Nanosci. Nanotechnol. 21(7), 3707–3710 (2021)CrossRef J.K. Kim, M. Han, Y. Kim et al., Pd-decorated multi-walled carbon nanotube sensor for hydrogen detection. J. Nanosci. Nanotechnol. 21(7), 3707–3710 (2021)CrossRef
13.
go back to reference R.K. Jha, A. Nanda, N. Bhat, Sub-ppm sulfur dioxide detection using MoS2 modified multi-wall carbon nanotubes at room temperature. Nano Sel. 3, 98–107 (2021)CrossRef R.K. Jha, A. Nanda, N. Bhat, Sub-ppm sulfur dioxide detection using MoS2 modified multi-wall carbon nanotubes at room temperature. Nano Sel. 3, 98–107 (2021)CrossRef
14.
go back to reference Q. Wu, X. Li, X. Wang et al., High-performance p-hexafluoroisopropanol phenyl functionalized multi-walled carbon nanotube film on surface acoustic wave device for organophosphorus vapor detection. Nanotechnology 33(37), 375501 (2022)CrossRef Q. Wu, X. Li, X. Wang et al., High-performance p-hexafluoroisopropanol phenyl functionalized multi-walled carbon nanotube film on surface acoustic wave device for organophosphorus vapor detection. Nanotechnology 33(37), 375501 (2022)CrossRef
15.
go back to reference S.S. Katta, S. Yadav, A.P. Singh et al., Investigation of pristine and B/N/Pt/Au/Pd doped single-walled carbon nanotube as phosgene gas sensor: A first-principles analysis. Appl. Surf. Sci. 588, 152989 (2022)CrossRef S.S. Katta, S. Yadav, A.P. Singh et al., Investigation of pristine and B/N/Pt/Au/Pd doped single-walled carbon nanotube as phosgene gas sensor: A first-principles analysis. Appl. Surf. Sci. 588, 152989 (2022)CrossRef
16.
go back to reference S. Arunachalam, R. Izquierdo, F. Nabki, Ionization gas sensor using suspended carbon nanotube beams. Sensors 20(6), 1660 (2020)CrossRef S. Arunachalam, R. Izquierdo, F. Nabki, Ionization gas sensor using suspended carbon nanotube beams. Sensors 20(6), 1660 (2020)CrossRef
17.
go back to reference H. Song, K. Li, Q.F. Li, A tripolar-electrode ionization gas sensor using a carbon nanotube cathode for NO detection. J. Micromech. Microeng. 28(6), 065010 (2018)CrossRef H. Song, K. Li, Q.F. Li, A tripolar-electrode ionization gas sensor using a carbon nanotube cathode for NO detection. J. Micromech. Microeng. 28(6), 065010 (2018)CrossRef
18.
go back to reference S. Arunachalam, R. Izquierdo, F. Nabki, Fabrication of an ionization gas sensor using suspended carbon nanotubes. IEEE Sens. 2019, 1–4 (2019) S. Arunachalam, R. Izquierdo, F. Nabki, Fabrication of an ionization gas sensor using suspended carbon nanotubes. IEEE Sens. 2019, 1–4 (2019)
19.
go back to reference M.N. Norizan, S. Demon, Carbon nanotubes-based sensor for ammonia gas detection -an overview. Polimery 66(3), 175–186 (2021)CrossRef M.N. Norizan, S. Demon, Carbon nanotubes-based sensor for ammonia gas detection -an overview. Polimery 66(3), 175–186 (2021)CrossRef
20.
go back to reference J.Y. Kim, I. Kaganovich, H.C. Lee, Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications. Plasma Sources Sci. Technol. 31, 033001 (2022)CrossRef J.Y. Kim, I. Kaganovich, H.C. Lee, Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications. Plasma Sources Sci. Technol. 31, 033001 (2022)CrossRef
21.
go back to reference N. Modi, E.L. Koratkar et al., Miniaturized gas ionization sensors using carbon nanotubes. Nature 424(6945), 171–174 (2003)CrossRef N. Modi, E.L. Koratkar et al., Miniaturized gas ionization sensors using carbon nanotubes. Nature 424(6945), 171–174 (2003)CrossRef
22.
go back to reference Y. Zhang, S.T. Li, J.Y. Zhang et al., High-performance gas sensors with temperature measurement. Sci. Rep. 3(1), 1267 (2013)CrossRef Y. Zhang, S.T. Li, J.Y. Zhang et al., High-performance gas sensors with temperature measurement. Sci. Rep. 3(1), 1267 (2013)CrossRef
23.
go back to reference Z.G. Pan, Y. Zhang, Z.Z. Cheng et al., A high-integration sensor array sensitive to oxynitride mixture. Sens. Actuators, B 245, 183–188 (2017)CrossRef Z.G. Pan, Y. Zhang, Z.Z. Cheng et al., A high-integration sensor array sensitive to oxynitride mixture. Sens. Actuators, B 245, 183–188 (2017)CrossRef
24.
go back to reference D.R. Nagamalli, Alli., Multi layered bio gas sensor for external breathe - a COMSOL multiphysics based analysis. Solid State Technol. 63(5), 9058–9063 (2021) D.R. Nagamalli, Alli., Multi layered bio gas sensor for external breathe - a COMSOL multiphysics based analysis. Solid State Technol. 63(5), 9058–9063 (2021)
25.
go back to reference N. Harathi, K. Subramanian, A. Sarkar et al., Performance evaluation of SAW-based hydrogen gas sensors with different IDT geometries. Nano LIFE 12(03), 2250009 (2022)CrossRef N. Harathi, K. Subramanian, A. Sarkar et al., Performance evaluation of SAW-based hydrogen gas sensors with different IDT geometries. Nano LIFE 12(03), 2250009 (2022)CrossRef
26.
go back to reference B.V. Kumar, S. Darshan, B.W. Shivaraj, Modeling and simulation of TiO2/Se sensor for detection of CO gas using COMSOL multiphysics. ECS Trans. 107(1), 5867–5877 (2022)CrossRef B.V. Kumar, S. Darshan, B.W. Shivaraj, Modeling and simulation of TiO2/Se sensor for detection of CO gas using COMSOL multiphysics. ECS Trans. 107(1), 5867–5877 (2022)CrossRef
27.
28.
go back to reference M. Abdelsalam, High-voltage engineering: theory and practice, electrical and computer engineering series (Crc Press, Florida, 2000) M. Abdelsalam, High-voltage engineering: theory and practice, electrical and computer engineering series (Crc Press, Florida, 2000)
29.
go back to reference S.O. Kasap, Principles of electronic materials and devices, (Mcgraw-Hill, NewYork, 2001) S.O. Kasap, Principles of electronic materials and devices, (Mcgraw-Hill, NewYork, 2001)
30.
go back to reference G.J.M. Hagelaar, L.C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14(4), 722–733 (2005)CrossRef G.J.M. Hagelaar, L.C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14(4), 722–733 (2005)CrossRef
31.
go back to reference V. Guerra, P.A. Sa, J. Loureiro, Role played by the N2(A3Σu+) metastable in stationary N2 and N2–O2 discharges. J. Phys. D: Appl. Phys. 34(12), 1745–1755 (2001)CrossRef V. Guerra, P.A. Sa, J. Loureiro, Role played by the N2(A3Σu+) metastable in stationary N2 and N2–O2 discharges. J. Phys. D: Appl. Phys. 34(12), 1745–1755 (2001)CrossRef
32.
go back to reference Y. Sakiyama, D.B. Graves, H.W. Chang et al., Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D: Appl. Phys. 45(42), 425201 (2012)CrossRef Y. Sakiyama, D.B. Graves, H.W. Chang et al., Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D: Appl. Phys. 45(42), 425201 (2012)CrossRef
33.
go back to reference S. Stoykov, C. Eggs, U. Kortshagen, Plasma chemistry and growth of nanosized particles in a C2H2 RF discharge. J. Phys. D: Appl. Phys. 34(14), 2160–2173 (2001)CrossRef S. Stoykov, C. Eggs, U. Kortshagen, Plasma chemistry and growth of nanosized particles in a C2H2 RF discharge. J. Phys. D: Appl. Phys. 34(14), 2160–2173 (2001)CrossRef
34.
go back to reference H. Brunet, J. Rocca Serra, Model for a glow discharge in flowing nitrogen. J. Appl. Phys. 57(5), 1574–1581 (1985)CrossRef H. Brunet, J. Rocca Serra, Model for a glow discharge in flowing nitrogen. J. Appl. Phys. 57(5), 1574–1581 (1985)CrossRef
Metadata
Title
Structural optimization of the ionized gas sensor based on carbon nanotubes
Authors
Zhenzhen Cheng
Yunde Xu
Guofeng He
Publication date
01-03-2023
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2023
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-023-10182-7

Other articles of this Issue 8/2023

Journal of Materials Science: Materials in Electronics 8/2023 Go to the issue