Skip to main content
Top
Published in: Journal of Iron and Steel Research International 10/2021

16-01-2021 | Original Paper

Structure and electrochemical characteristics of Mg–Ti–Ni-based electrode alloys synthesized by mechanical milling

Authors: Zhong-hui Hou, Xin Wei, Wei Zhang, Ze-ming Yuan, Hui Yong, Qi-lu Ge

Published in: Journal of Iron and Steel Research International | Issue 10/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The vacuum induction melting was adopted to fabricating Mg50−xTixNi45Al3Co2 (x = 0, 1, 2, 3, 4 at.%) composites protected by the high-purity helium atmosphere. Subsequently, the surface modification treatment of the as-cast alloys was carried out by mechanically coating nickel. The amorphous and nanocrystalline Mg50−xTixNi45Al3Co2 (x = 0–4) + 50 wt.% Ni hydrogen storing alloys as the negative materials in batteries were prepared through ball milling, and the influences of milling time and Ti dosage on the structure and electrochemical hydrogen storing behaviors of the corresponding samples were studied in detail. The electrochemical testing reveals that the as-milled alloys have excellent performances and can finish the electrochemical hydrogenation and dehydrogenation at indoor temperature. In the first cycle without activation, the ball milling alloy obtains the maximum value of discharge capacity. Discharge capacity and cyclic steadiness of the composites conspicuously grow as Ti content and milling duration increase. Concretely, the capacity retaining rate at 100th cycle and the discharge capacity of 30 h milling samples augment from 53% to 78% and from 435.2 to 567.2 mAh/g with changing Ti content from 0 to 4. The same performances of the alloy (x = 4) are enhanced from 61% to 78% and from 379.9 to 567.2 mAh/g, respectively, with extending milling duration. Moreover, high rate discharge ability, potential-step measurements, potentiodynamic polarization curves and electrochemical impedance spectrum manifest that the electrochemical kinetics properties can achieve significant amelioration as Ti content varies and milling duration is extended.
Literature
[1]
go back to reference L.Z. Ouyang, Z.J. Cao, L.L. Li, H. Wang, J.W. Liu, D. Min, Y.W. Chen, F.M. Xiao, R.H. Tang, M. Zhu, Int. J. Hydrogen Energy 39 (2014) 12765–12772.CrossRef L.Z. Ouyang, Z.J. Cao, L.L. Li, H. Wang, J.W. Liu, D. Min, Y.W. Chen, F.M. Xiao, R.H. Tang, M. Zhu, Int. J. Hydrogen Energy 39 (2014) 12765–12772.CrossRef
[2]
go back to reference N.F. Attia, M.M. Menemparabath, S. Arepalli, K.E. Geckeler, Int. J. Hydrogen Energy 38 (2013) 9251–9262.CrossRef N.F. Attia, M.M. Menemparabath, S. Arepalli, K.E. Geckeler, Int. J. Hydrogen Energy 38 (2013) 9251–9262.CrossRef
[5]
go back to reference Y. Wang, W.Q. Deng, X.W. Liu, S.Y. Wang, X. Wang, Int. J. Hydrogen Energy 34 (2009) 1444–1449.CrossRef Y. Wang, W.Q. Deng, X.W. Liu, S.Y. Wang, X. Wang, Int. J. Hydrogen Energy 34 (2009) 1444–1449.CrossRef
[6]
go back to reference Y. Chen, C. Sequeira, X. Song, C. Chen, Z. Phys. Chem. 220 (2006) 631–639. Y. Chen, C. Sequeira, X. Song, C. Chen, Z. Phys. Chem. 220 (2006) 631–639.
[7]
go back to reference L. Wang, X.H. Wang, L.X. Chen, X.Z. Xiao, L.H. Gao, C.Y. Wang, C.P. Chen, Q.D. Wang, J. Alloy. Compd. 428 (2007) 338–343.CrossRef L. Wang, X.H. Wang, L.X. Chen, X.Z. Xiao, L.H. Gao, C.Y. Wang, C.P. Chen, Q.D. Wang, J. Alloy. Compd. 428 (2007) 338–343.CrossRef
[8]
go back to reference Z.C. Liu, Z.H. Hou, F. Ruan, Y. Yin, J.Y. Zhang, J. Alloy. Compd. 624 (2015) 68–73.CrossRef Z.C. Liu, Z.H. Hou, F. Ruan, Y. Yin, J.Y. Zhang, J. Alloy. Compd. 624 (2015) 68–73.CrossRef
[9]
go back to reference J. Cao, Y.M. Zhao, L. Zhang, Z.R. Jia, W.F. Wang, Z.T. Dong, S.M. Han, Y. Li, Int. J. Hydrogen Energy 43 (2018) 17800–17808.CrossRef J. Cao, Y.M. Zhao, L. Zhang, Z.R. Jia, W.F. Wang, Z.T. Dong, S.M. Han, Y. Li, Int. J. Hydrogen Energy 43 (2018) 17800–17808.CrossRef
[10]
go back to reference Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, Q. Li, J. Magn. Alloy. 7 (2019) 58–71.CrossRef Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, Q. Li, J. Magn. Alloy. 7 (2019) 58–71.CrossRef
[11]
go back to reference J.L. Huang, H. Wang, L.Z. Ouyang, J.W. Liu, M. Zhu, J. Power Sources 438 (2019) 226984.CrossRef J.L. Huang, H. Wang, L.Z. Ouyang, J.W. Liu, M. Zhu, J. Power Sources 438 (2019) 226984.CrossRef
[12]
go back to reference H. Yong, S.H. Guo, Z.M. Yuan, Y. Qi, D.L. Zhao, Y.H. Zhang, J. Mater. Sci. Technol. 51 (2020) 84–93.CrossRef H. Yong, S.H. Guo, Z.M. Yuan, Y. Qi, D.L. Zhao, Y.H. Zhang, J. Mater. Sci. Technol. 51 (2020) 84–93.CrossRef
[13]
go back to reference X.R. Chen, Q.Y. Liao, Q.C. Le, Q. Zou, H.N. Wang, A. Atrens, Electrochimica Acta 348 (2020) 136315.CrossRef X.R. Chen, Q.Y. Liao, Q.C. Le, Q. Zou, H.N. Wang, A. Atrens, Electrochimica Acta 348 (2020) 136315.CrossRef
[14]
go back to reference L. Li, H. Liu, Y. Yan, H.L. Zhu, H.J. Fang, X.E. Luo, Y.L. Dai, K.Yu, Int. J. Hydrogen Energy 44 (2019) 12073–12084.CrossRef L. Li, H. Liu, Y. Yan, H.L. Zhu, H.J. Fang, X.E. Luo, Y.L. Dai, K.Yu, Int. J. Hydrogen Energy 44 (2019) 12073–12084.CrossRef
[15]
go back to reference L. Zeng, Z.Q. Lan, Z.Z. Sun, H. Ning, H.Z. Liu, J. Guo, Int. J. Hydrogen Energy 44 (2019) 25840–25849.CrossRef L. Zeng, Z.Q. Lan, Z.Z. Sun, H. Ning, H.Z. Liu, J. Guo, Int. J. Hydrogen Energy 44 (2019) 25840–25849.CrossRef
[16]
go back to reference Y. Wang, S.Z. Qiao, X. Wang, Int. J. Hydrogen Energy 33 (2008) 5066–5072.CrossRef Y. Wang, S.Z. Qiao, X. Wang, Int. J. Hydrogen Energy 33 (2008) 5066–5072.CrossRef
[17]
go back to reference L. Wang, P.E. Vullum, K. Asheim, X.H. Wang, A.M. Svensson, F. Vullum-Bruer, Nano Energy 48 (2018) 227–237.CrossRef L. Wang, P.E. Vullum, K. Asheim, X.H. Wang, A.M. Svensson, F. Vullum-Bruer, Nano Energy 48 (2018) 227–237.CrossRef
[18]
go back to reference S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weißgärber, Int. J. Hydrogen Energy 36 (2011) 10808–10815.CrossRef S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weißgärber, Int. J. Hydrogen Energy 36 (2011) 10808–10815.CrossRef
[20]
go back to reference Z.J. Cao, L.Z. Ouyang, Y.Y. Wu, H. Wang, J.W. Liu, F. Fang, D.L. Sun, Q.G. Zhang, M. Zhu, J. Alloy. Compd. 623 (2015) 354–358.CrossRef Z.J. Cao, L.Z. Ouyang, Y.Y. Wu, H. Wang, J.W. Liu, F. Fang, D.L. Sun, Q.G. Zhang, M. Zhu, J. Alloy. Compd. 623 (2015) 354–358.CrossRef
[21]
go back to reference L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Int. J. Hydrogen Energy 38 (2013) 8881–8887.CrossRef L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Int. J. Hydrogen Energy 38 (2013) 8881–8887.CrossRef
[22]
go back to reference L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, J. Alloy. Compd. 586 (2014) 113–117.CrossRef L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, J. Alloy. Compd. 586 (2014) 113–117.CrossRef
[23]
go back to reference A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, Ch. Mickel, N. Mattern, J. Alloy. Compd. 398 (2005) 156–164.CrossRef A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, Ch. Mickel, N. Mattern, J. Alloy. Compd. 398 (2005) 156–164.CrossRef
[24]
go back to reference X. Li, T. Yang, Y.H. Zhang, D.L. Zhao, H.P. Ren, Int. J. Hydrogen Energy 39 (2014) 13557–13563.CrossRef X. Li, T. Yang, Y.H. Zhang, D.L. Zhao, H.P. Ren, Int. J. Hydrogen Energy 39 (2014) 13557–13563.CrossRef
[25]
go back to reference S.S. Han, H.Y. Lee, N.H. Goo, W.T. Jeong, K.S. Lee, J. Alloy. Compd. 330–332 (2002) 841–845.CrossRef S.S. Han, H.Y. Lee, N.H. Goo, W.T. Jeong, K.S. Lee, J. Alloy. Compd. 330–332 (2002) 841–845.CrossRef
[26]
go back to reference S.F. Santos, J.F.R. De Castro, T.T. Ishikawa, E.A. Ticianelli, J. Mater. Sci. 43 (2008) 2889–2894.CrossRef S.F. Santos, J.F.R. De Castro, T.T. Ishikawa, E.A. Ticianelli, J. Mater. Sci. 43 (2008) 2889–2894.CrossRef
[27]
[28]
go back to reference L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, J. Phys. Chem. C 118 (2014) 7808–7820.CrossRef L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, J. Phys. Chem. C 118 (2014) 7808–7820.CrossRef
[29]
go back to reference Y.H. Zhang, G.Q. Wang, X.P. Dong, S.H. Guo, J.Y. Ren, X.L. Wang, J. Power Sources 148 (2005) 105–111.CrossRef Y.H. Zhang, G.Q. Wang, X.P. Dong, S.H. Guo, J.Y. Ren, X.L. Wang, J. Power Sources 148 (2005) 105–111.CrossRef
[30]
go back to reference Y.H. Zhang, B.W. Li, H.P. Ren, Y. Cai, X.P. Dong, X.L. Wang, J. Alloy. Compd. 458 (2008) 340–345.CrossRef Y.H. Zhang, B.W. Li, H.P. Ren, Y. Cai, X.P. Dong, X.L. Wang, J. Alloy. Compd. 458 (2008) 340–345.CrossRef
[31]
[32]
go back to reference Q.Y. Zhang, L. Zang, Y.K. Huang, P.Y. Gao, L.F. Jiao, H.T. Yuan, Y.J. Wang, Int. J. Hydrogen Energy 42 (2017) 24247–24255.CrossRef Q.Y. Zhang, L. Zang, Y.K. Huang, P.Y. Gao, L.F. Jiao, H.T. Yuan, Y.J. Wang, Int. J. Hydrogen Energy 42 (2017) 24247–24255.CrossRef
[33]
go back to reference Y.H. Zhang, G.Q. Wang, X.P. Dong, S.H. Guo, X.L. Wang, J. Power Sources 137 (2004) 309–316.CrossRef Y.H. Zhang, G.Q. Wang, X.P. Dong, S.H. Guo, X.L. Wang, J. Power Sources 137 (2004) 309–316.CrossRef
[34]
go back to reference Y.H. Zhang, H.P. Ren, B.W. Li, S.H. Guo, Q.C. Wang, X.L. Wang, Int. J. Hydrogen Energy 34 (2009) 6335–6342.CrossRef Y.H. Zhang, H.P. Ren, B.W. Li, S.H. Guo, Q.C. Wang, X.L. Wang, Int. J. Hydrogen Energy 34 (2009) 6335–6342.CrossRef
[35]
go back to reference P. Li, Y.H. Zhang, X.L. Wang, Y.F. Lin, X.H. Qu, J. Power Sources 124 (2003) 285–292.CrossRef P. Li, Y.H. Zhang, X.L. Wang, Y.F. Lin, X.H. Qu, J. Power Sources 124 (2003) 285–292.CrossRef
[36]
go back to reference W.H. Lai, C.Z. Yu, Battery 26 (1996) 189–191. W.H. Lai, C.Z. Yu, Battery 26 (1996) 189–191.
[37]
go back to reference Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, J. Alloy. Compd. 466 (2008) 176–181.CrossRef Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, J. Alloy. Compd. 466 (2008) 176–181.CrossRef
[38]
go back to reference J.G. Zhang, Y.F. Zhu, Y.C. Wang, Z.G. Pu, L.Q. Li, Int. J. Hydrogen Energy 37 (2012) 18140–18147.CrossRef J.G. Zhang, Y.F. Zhu, Y.C. Wang, Z.G. Pu, L.Q. Li, Int. J. Hydrogen Energy 37 (2012) 18140–18147.CrossRef
[39]
go back to reference C. Iwakura, H. Inoue, S. Nohara, R. Shin-ya, S. Kurosaka, K. Miyanohara, J. Alloy. Compd. 330–332 (2002) 636–639.CrossRef C. Iwakura, H. Inoue, S. Nohara, R. Shin-ya, S. Kurosaka, K. Miyanohara, J. Alloy. Compd. 330–332 (2002) 636–639.CrossRef
[40]
[42]
go back to reference S. Ruggeri, L. Roué, J. Huot, R. Schulz, L. Aymard, J.M. Tarascon, J. Power Sources 112 (2002) 547–556.CrossRef S. Ruggeri, L. Roué, J. Huot, R. Schulz, L. Aymard, J.M. Tarascon, J. Power Sources 112 (2002) 547–556.CrossRef
[43]
[44]
go back to reference X.Y. Zhao, Y. Ding, L.Q. Ma, L.Y. Wang, M. Yang, X.D. Shen, Int. J. Hydrogen Energy 33 (2008) 6727–6733.CrossRef X.Y. Zhao, Y. Ding, L.Q. Ma, L.Y. Wang, M. Yang, X.D. Shen, Int. J. Hydrogen Energy 33 (2008) 6727–6733.CrossRef
[45]
[46]
[47]
go back to reference X.W. Yang, Y.F. Zhu, J.G. Zhang, Y. Zhang, Y.N. Liu, H.J. Lin, T.M. Wang, L.Q. Li, J. Alloy. Compd. 746 (2018) 421–427.CrossRef X.W. Yang, Y.F. Zhu, J.G. Zhang, Y. Zhang, Y.N. Liu, H.J. Lin, T.M. Wang, L.Q. Li, J. Alloy. Compd. 746 (2018) 421–427.CrossRef
[48]
go back to reference T.T. Zhai, T. Yang, Z.M. Yuan, Y.H. Zhang, Int. J. Hydrogen Energy 39 (2014) 14282–14287.CrossRef T.T. Zhai, T. Yang, Z.M. Yuan, Y.H. Zhang, Int. J. Hydrogen Energy 39 (2014) 14282–14287.CrossRef
[49]
go back to reference N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Alloy. Compd. 202 (1993) 183–197.CrossRef N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Alloy. Compd. 202 (1993) 183–197.CrossRef
[50]
go back to reference H.L. Ding, S.M. Han, Y. Liu, J.S. Hao, Y. Li, J.W. Zhang, Int. J. Hydrogen Energy 34 (2009) 9402–9408.CrossRef H.L. Ding, S.M. Han, Y. Liu, J.S. Hao, Y. Li, J.W. Zhang, Int. J. Hydrogen Energy 34 (2009) 9402–9408.CrossRef
Metadata
Title
Structure and electrochemical characteristics of Mg–Ti–Ni-based electrode alloys synthesized by mechanical milling
Authors
Zhong-hui Hou
Xin Wei
Wei Zhang
Ze-ming Yuan
Hui Yong
Qi-lu Ge
Publication date
16-01-2021
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 10/2021
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00547-1

Other articles of this Issue 10/2021

Journal of Iron and Steel Research International 10/2021 Go to the issue

Premium Partners