Skip to main content
Top
Published in: Physics of Metals and Metallography 8/2020

01-08-2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Energy of 〈110〉 Symmetric Tilt Boundaries in Polycrystalline Tungsten

Authors: M. E. Stupak, M. G. Urazaliev, V. V. Popov

Published in: Physics of Metals and Metallography | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A computer simulation of the structure and energy of 〈110〉 symmetric tilt boundaries has been performed for polycrystalline tungsten. Calculations have been made using an embedded atom potential implemented in the LAMMPS software. It has been shown that structure of the 〈110〉 symmetric tilt boundaries can consist of a limited number of structural elements. The energy and width of grain boundaries for different misorientations, as well as energies of vacancy formation have been determined via molecular statistics simulation of grain boundaries. The correlation between the energy of vacancy formation in grain boundaries and changes in the boundary structure has been analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995). A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995).
2.
go back to reference S. Zinkle and L. Snead, “Designing radiation resistance in materials for fusion energy,” Ann. Rev. Mater. Res. 44, 241–267 (2014).CrossRef S. Zinkle and L. Snead, “Designing radiation resistance in materials for fusion energy,” Ann. Rev. Mater. Res. 44, 241–267 (2014).CrossRef
3.
go back to reference D. Maisonnier, D. Campbell, I. Cook, L. D. Pace, L. Giancarli, J. Hayward, A. L. Puma, M. Medrano, P. Norajitra, M. Roccella, P. Sardain, M. Tran, and D. Ward, “Power plant conceptual studies in Europe,” Nucl. Fusion 47, 1524–1532 (2007).CrossRef D. Maisonnier, D. Campbell, I. Cook, L. D. Pace, L. Giancarli, J. Hayward, A. L. Puma, M. Medrano, P. Norajitra, M. Roccella, P. Sardain, M. Tran, and D. Ward, “Power plant conceptual studies in Europe,” Nucl. Fusion 47, 1524–1532 (2007).CrossRef
4.
go back to reference M. A. Tschopp and D. L. McDowell, “Structures and energies of Sigma3 asymmetric tilt grain boundaries in Cu and Al,” Phil. Mag. (2007) 3147–3173. M. A. Tschopp and D. L. McDowell, “Structures and energies of Sigma3 asymmetric tilt grain boundaries in Cu and Al,” Phil. Mag. (2007) 3147–3173.
5.
go back to reference I. I. Novoselov, A. Yu. Kuksin, and A. V. Yanilkin, “Energies of formation and structures of point defects at tilt grain boundaries in molybdenum,” Phys. Solid State 56, 1349–1355 (2014). I. I. Novoselov, A. Yu. Kuksin, and A. V. Yanilkin, “Energies of formation and structures of point defects at tilt grain boundaries in molybdenum,” Phys. Solid State 56, 1349–1355 (2014).
6.
go back to reference I. Novoselov and A. Yanilkin, “Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo,” Comp. Mater. Sci. 112, 276–281 (2016).CrossRef I. Novoselov and A. Yanilkin, “Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo,” Comp. Mater. Sci. 112, 276–281 (2016).CrossRef
7.
go back to reference T. Frolov, W. Setyawan, R. J. Kurtz, J. Marian, A. R. Oganov, R. E. Rudd, and Q. Zhu, “Grain boundary phases in bcc metals,” Nanoscale 10, 8253–8268 (2018).CrossRef T. Frolov, W. Setyawan, R. J. Kurtz, J. Marian, A. R. Oganov, R. E. Rudd, and Q. Zhu, “Grain boundary phases in bcc metals,” Nanoscale 10, 8253–8268 (2018).CrossRef
8.
go back to reference T. Frolov, Q. Zhu, T. Oppelstrup, J. Marian, and R. E. Rudd, “Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects,” Acta Mater. 159, 123–134 (2018).CrossRef T. Frolov, Q. Zhu, T. Oppelstrup, J. Marian, and R. E. Rudd, “Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects,” Acta Mater. 159, 123–134 (2018).CrossRef
9.
go back to reference A. V. Vekman and B. F. Dem’yanov, “Structural vacancy model of grain boundaries,” Phys. Met. Metallogr. 120, 50–59 (2019).CrossRef A. V. Vekman and B. F. Dem’yanov, “Structural vacancy model of grain boundaries,” Phys. Met. Metallogr. 120, 50–59 (2019).CrossRef
10.
go back to reference M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, “Interatomic potentials for modelling radiation defects and dislocations in tungsten,” J. Phys.: Condens. Matter 25, 395502 (2013). M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, “Interatomic potentials for modelling radiation defects and dislocations in tungsten,” J. Phys.: Condens. Matter 25, 395502 (2013).
12.
go back to reference A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool Modelling Simul,” Mater. Sci. Eng. 18, 015012 (2010). A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool Modelling Simul,” Mater. Sci. Eng. 18, 015012 (2010).
13.
go back to reference A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).CrossRef A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).CrossRef
14.
go back to reference D. Scheiber, R. Pippan, P. Puschnig, and L. Romaner, “Ab initio calculations of grain boundaries in bcc metals,” Modell. Simul. Mater. Sci. Eng. 24, 035013 (2016).CrossRef D. Scheiber, R. Pippan, P. Puschnig, and L. Romaner, “Ab initio calculations of grain boundaries in bcc metals,” Modell. Simul. Mater. Sci. Eng. 24, 035013 (2016).CrossRef
15.
go back to reference P. Gas, D. L. Beke, and J. Bernardino, “Grain-boundary diffusion: Analysis of the C kinetic regime,” Phil. Mag. Lett. 65, 133–139 (1992).CrossRef P. Gas, D. L. Beke, and J. Bernardino, “Grain-boundary diffusion: Analysis of the C kinetic regime,” Phil. Mag. Lett. 65, 133–139 (1992).CrossRef
16.
go back to reference T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50, 3577–3587 (1994).CrossRef T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50, 3577–3587 (1994).CrossRef
17.
go back to reference V. S. Divinski, G. Reglitz, and G. Wilde, “Grain boundary self-diffusion in polycrystalline nickel of different purity levels,” Acta Mater. 58, 386–395 (2010).CrossRef V. S. Divinski, G. Reglitz, and G. Wilde, “Grain boundary self-diffusion in polycrystalline nickel of different purity levels,” Acta Mater. 58, 386–395 (2010).CrossRef
18.
go back to reference D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, “Grain boundary width, energy and self-diffusion in nickel: effect of material purity,” Acta Mater. 61, 5188–5197 (2013).CrossRef D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, “Grain boundary width, energy and self-diffusion in nickel: effect of material purity,” Acta Mater. 61, 5188–5197 (2013).CrossRef
19.
go back to reference G. J. Thomas, R. W. Siegel, and J. A. Eastman, “Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation,” Scr. Metall. Mater. 24, 201–206 (1990).CrossRef G. J. Thomas, R. W. Siegel, and J. A. Eastman, “Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation,” Scr. Metall. Mater. 24, 201–206 (1990).CrossRef
20.
go back to reference B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995).CrossRef B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995).CrossRef
21.
go back to reference H. Rösner, C. T. Koch, and G. Wilde, “Strain mapping along Al–Pb interfaces,” Acta Mater. 58, 162–172 (2010).CrossRef H. Rösner, C. T. Koch, and G. Wilde, “Strain mapping along Al–Pb interfaces,” Acta Mater. 58, 162–172 (2010).CrossRef
22.
go back to reference C N. Chen, L.-L. Niu, Y. Zhang, X. Shu, H.-B. Zhou, S. Jin, G. Ran, G.-H. Lu, and F. Gao, “Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten,” Sci. Rep. 6, 36955 (2016).CrossRef C N. Chen, L.-L. Niu, Y. Zhang, X. Shu, H.-B. Zhou, S. Jin, G. Ran, G.-H. Lu, and F. Gao, “Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten,” Sci. Rep. 6, 36955 (2016).CrossRef
23.
go back to reference D. Scheiber, V. I. Razumovskiy, P. Puschnig, R. Pippan, and L. Romaner, “Ab initio description of segregation and cohesion of grain boundaries in W–25 at % Re alloys,” Acta Mater. 88, 180–189 (2015).CrossRef D. Scheiber, V. I. Razumovskiy, P. Puschnig, R. Pippan, and L. Romaner, “Ab initio description of segregation and cohesion of grain boundaries in W–25 at % Re alloys,” Acta Mater. 88, 180–189 (2015).CrossRef
Metadata
Title
Structure and Energy of 〈110〉 Symmetric Tilt Boundaries in Polycrystalline Tungsten
Authors
M. E. Stupak
M. G. Urazaliev
V. V. Popov
Publication date
01-08-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 8/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20080116

Other articles of this Issue 8/2020

Physics of Metals and Metallography 8/2020 Go to the issue