Skip to main content
Top

2018 | OriginalPaper | Chapter

21. Structure and Mechanical Properties of Nacre

Author : Bharat Bhushan

Published in: Biomimetics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many biological organisms exhibit unique chemical and physical properties (Lowenstam and Werner 1989). They often use components that contain both inorganic and organic compounds with complex structures, and are often hierarchically organized, ranging from nano- to meso-levels. The hierarchical structure provides a high tolerance against defects at all length scales. Most biological materials are multifunctional and often tend to have self-healing abilities (Vincent 1991; Ratner and Bryant 2004). In two-component biological materials, such as bones, teeth, and abalone shells, the mineral component provides high mechanical strength and the organic component hinders crack propagation, which increases fracture toughness responsible for high durability (Meyers et al. 2006). A biomineral system, which has been much investigated, is the inner layer of abalone, called nacre.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbot, R., Tucker, D., and Peter, S. (2000), Compendium of Seashells, fourth ed., Odyssey Publishing, El Cajon, California. Abbot, R., Tucker, D., and Peter, S. (2000), Compendium of Seashells, fourth ed., Odyssey Publishing, El Cajon, California.
go back to reference Barthelat, F. (2010), “Nacre from Mollusk Shells: A Model for High-performance Structural Materials,” Bioinspir. Biomim. 5, 035001-1–8.CrossRef Barthelat, F. (2010), “Nacre from Mollusk Shells: A Model for High-performance Structural Materials,” Bioinspir. Biomim. 5, 035001-1–8.CrossRef
go back to reference Barthelat, F. and Zhu, D. J. (2011), “A Novel Biomimetic Material Duplicating the Structure and Mechanics of Natural Nacre,” J. Mater. Res. 26, 1203–1215.CrossRef Barthelat, F. and Zhu, D. J. (2011), “A Novel Biomimetic Material Duplicating the Structure and Mechanics of Natural Nacre,” J. Mater. Res. 26, 1203–1215.CrossRef
go back to reference Barthelat, F., Li, C. M., Comi, C. and Espinosa, H. D. (2006), “Mechanical Properties of Nacre Constituents and Their Impact on Mechanical Performance,” J. Mater. Res. 21, 1977–1986.CrossRef Barthelat, F., Li, C. M., Comi, C. and Espinosa, H. D. (2006), “Mechanical Properties of Nacre Constituents and Their Impact on Mechanical Performance,” J. Mater. Res. 21, 1977–1986.CrossRef
go back to reference Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M. and Espinosa, H. D. (2007), “On the Mechanics of Mother-of-Pearl: A Key Feature in the Material Hierarchical Structure,” J. Mech. Phys. Solids 55, 306–337.CrossRef Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M. and Espinosa, H. D. (2007), “On the Mechanics of Mother-of-Pearl: A Key Feature in the Material Hierarchical Structure,” J. Mech. Phys. Solids 55, 306–337.CrossRef
go back to reference Bhushan, B. (2009), “Biomimetics: Lessons from Nature- An Overview,” Phil. Trans. R. Soc. A 367, 1445–1486. Bhushan, B. (2009), “Biomimetics: Lessons from Nature- An Overview,” Phil. Trans. R. Soc. A 367, 1445–1486.
go back to reference Bonderer, L. J., Studart, A. R. and Gauckler, L. J. (2008), “Bioinspired Design and Assembly of Platelet Reinforced Polymer Films,” Science 319, 1069–1073.CrossRef Bonderer, L. J., Studart, A. R. and Gauckler, L. J. (2008), “Bioinspired Design and Assembly of Platelet Reinforced Polymer Films,” Science 319, 1069–1073.CrossRef
go back to reference Bruet, B. J. F., Qi, H. J., Boyce, M. C., Panas, R., Tai, K., Frick, L., and Ortiz, C. (2005), “Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus niloticus,” J. Mater. Res. 20, 2400–2419.CrossRef Bruet, B. J. F., Qi, H. J., Boyce, M. C., Panas, R., Tai, K., Frick, L., and Ortiz, C. (2005), “Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus niloticus,” J. Mater. Res. 20, 2400–2419.CrossRef
go back to reference Bueno, S. and Baudin, C. (2009), “Design and Processing of a Ceramic Laminate with High Toughness and Strong Interfaces,” Compos. Part A 40, 137–143.CrossRef Bueno, S. and Baudin, C. (2009), “Design and Processing of a Ceramic Laminate with High Toughness and Strong Interfaces,” Compos. Part A 40, 137–143.CrossRef
go back to reference Cartwright, J. H. E. and Checa, A. G. (2007), “The Dynamics of Nacre Self-assembly,” J. R. Soc. Interface 4, 491–504.CrossRef Cartwright, J. H. E. and Checa, A. G. (2007), “The Dynamics of Nacre Self-assembly,” J. R. Soc. Interface 4, 491–504.CrossRef
go back to reference Checa, A. G., Cartwright, J. H. E., Willinger, M. G. (2011), “Mineral Bridges in Nacre,” J. Struct. Biol. 176, 330–339.CrossRef Checa, A. G., Cartwright, J. H. E., Willinger, M. G. (2011), “Mineral Bridges in Nacre,” J. Struct. Biol. 176, 330–339.CrossRef
go back to reference Chen, R. F., Wang, C. A., Huang, Y. and Le, H. R. (2008), “An Efficient Biomimetic Process for Fabrication of Artificial Nacre with Ordered-Nano Structure,” Mater. Sci. Eng. C 28, 218–222.CrossRef Chen, R. F., Wang, C. A., Huang, Y. and Le, H. R. (2008), “An Efficient Biomimetic Process for Fabrication of Artificial Nacre with Ordered-Nano Structure,” Mater. Sci. Eng. C 28, 218–222.CrossRef
go back to reference Currey, J. D. (1977), “Mechanical Properties of Mother of Pearl in Tension,” Proc. R. Soc. Lond. B 196, 443–463.CrossRef Currey, J. D. (1977), “Mechanical Properties of Mother of Pearl in Tension,” Proc. R. Soc. Lond. B 196, 443–463.CrossRef
go back to reference Deville, S., Saiz, E., Nalla, R. K., and Tomsia, A. P. (2006), “Freezing as a Path to Build Complex Composites,” Science 27, 515–518.CrossRef Deville, S., Saiz, E., Nalla, R. K., and Tomsia, A. P. (2006), “Freezing as a Path to Build Complex Composites,” Science 27, 515–518.CrossRef
go back to reference Deville, S., Saiz, E. and Tomsia, A. P. (2008), “Using Ice to Mimic Nacre: From Structural Applications to Artificial Bone,” in: Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry, (eds. P. Behrens and E. Bäuerlein), John Wiley, Weinheim, Germany. Deville, S., Saiz, E. and Tomsia, A. P. (2008), “Using Ice to Mimic Nacre: From Structural Applications to Artificial Bone,” in: Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry, (eds. P. Behrens and E. Bäuerlein), John Wiley, Weinheim, Germany.
go back to reference Gunnison, K. E., Sarikaya, M., Liu, J. and Aksay, I. A. (1991), “Structure-mechanical Property Relationships in a Biological Ceramic-polymer Composite: Nacre,” MRS Proc., 255, 171–184. Gunnison, K. E., Sarikaya, M., Liu, J. and Aksay, I. A. (1991), “Structure-mechanical Property Relationships in a Biological Ceramic-polymer Composite: Nacre,” MRS Proc., 255, 171–184.
go back to reference Jackson, A. P., Vincent, J. F. V. and Turner, R. M. (1988), “The Mechanical Design of Nacre,” Proc. R. Soc. Lond. B 234, 415–440.CrossRef Jackson, A. P., Vincent, J. F. V. and Turner, R. M. (1988), “The Mechanical Design of Nacre,” Proc. R. Soc. Lond. B 234, 415–440.CrossRef
go back to reference Katti, D. R. and Katti, K. S. (2001), “3D Finite Element Modeling of Mechanical Response in Nacre-based Hybrid Nanocomposites,” J. Mater. Sci. 36, 1411–1417. Katti, D. R. and Katti, K. S. (2001), “3D Finite Element Modeling of Mechanical Response in Nacre-based Hybrid Nanocomposites,” J. Mater. Sci. 36, 1411–1417.
go back to reference Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2010), “A Novel Biomimetic Approach to the Design of High-performance Ceramic-metal Composites,” J. R. Soc. Interface 7, 741–753.CrossRef Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2010), “A Novel Biomimetic Approach to the Design of High-performance Ceramic-metal Composites,” J. R. Soc. Interface 7, 741–753.CrossRef
go back to reference Li, X. D., Chang, W. C., Chao, Y. J., Wang, R. and Chang, M. (2004), “Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone,” Nano Lett. 4, 613–617.CrossRef Li, X. D., Chang, W. C., Chao, Y. J., Wang, R. and Chang, M. (2004), “Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone,” Nano Lett. 4, 613–617.CrossRef
go back to reference Li, X. D., Xu, Z. H. and Wang, R. Z. (2006), “In Situ Observation of Nanograin Rotation and Deformation in Nacre,” Nano Lett. 6, 2301–2304.CrossRef Li, X. D., Xu, Z. H. and Wang, R. Z. (2006), “In Situ Observation of Nanograin Rotation and Deformation in Nacre,” Nano Lett. 6, 2301–2304.CrossRef
go back to reference Lin, A. Y. M., Chen, P. Y. and Meyers, M. A. (2008). “The Growth of Nacre in the Abalone Shell,” Acta Biomater. 4, 131–138.CrossRef Lin, A. Y. M., Chen, P. Y. and Meyers, M. A. (2008). “The Growth of Nacre in the Abalone Shell,” Acta Biomater. 4, 131–138.CrossRef
go back to reference Lin, T. H., Huang, W. H., Jun, I. K., and Jiang, P. (2009), “Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field,” Chem. Mater. 21, 2039–2044.CrossRef Lin, T. H., Huang, W. H., Jun, I. K., and Jiang, P. (2009), “Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field,” Chem. Mater. 21, 2039–2044.CrossRef
go back to reference Liu, K. S. and Jiang, L. (2011), “Bio-inspired Design of Multiscale Structures for Function Integration,” Nano Today 6, 155–175.CrossRef Liu, K. S. and Jiang, L. (2011), “Bio-inspired Design of Multiscale Structures for Function Integration,” Nano Today 6, 155–175.CrossRef
go back to reference Lowenstam, H. A. and Weiner, S. (1989), On Biomineralization, Oxford University Press, New York. Lowenstam, H. A. and Weiner, S. (1989), On Biomineralization, Oxford University Press, New York.
go back to reference Luz, G. M. and Mano, J. F. (2009), “Biomimetic Design of Materials and Biomaterials Inspired by the Structure of Nacre,” Phil. Trans. R. Soc. A. 367, 1587–1605.CrossRef Luz, G. M. and Mano, J. F. (2009), “Biomimetic Design of Materials and Biomaterials Inspired by the Structure of Nacre,” Phil. Trans. R. Soc. A. 367, 1587–1605.CrossRef
go back to reference Menig, R., Meyers, M. H., Meyers, M. A. and Vecchio, K. S. (2000), “Quasi-static and Dynamic Mechanical Response of Haliotis rufescens (Abalone) Shells,” Acta mater. 48, 2383– 2398.CrossRef Menig, R., Meyers, M. H., Meyers, M. A. and Vecchio, K. S. (2000), “Quasi-static and Dynamic Mechanical Response of Haliotis rufescens (Abalone) Shells,” Acta mater. 48, 2383– 2398.CrossRef
go back to reference Meyers, M. A. and Chawla, K. K. (2008), Mechanical Behavior of Materials, Cambridge University Press, New York. Meyers, M. A. and Chawla, K. K. (2008), Mechanical Behavior of Materials, Cambridge University Press, New York.
go back to reference Meyers, M. A., Lin, A. Y. M., Seki, Y., Chen, P. Y., Kad, B. K., Bodde, S. (2006), “Structural Biological Composites: An Overview,” JOM, July, 35–41. Meyers, M. A., Lin, A. Y. M., Seki, Y., Chen, P. Y., Kad, B. K., Bodde, S. (2006), “Structural Biological Composites: An Overview,” JOM, July, 35–41.
go back to reference Meyers, M. A., Chen, P. Y., Lin, A.Y.M. and Seki, Y. (2008), “Biological Materials: Structure and Mechanical Properties,” Prog. Mater. Sci. 53, 1–206.CrossRef Meyers, M. A., Chen, P. Y., Lin, A.Y.M. and Seki, Y. (2008), “Biological Materials: Structure and Mechanical Properties,” Prog. Mater. Sci. 53, 1–206.CrossRef
go back to reference Meyers, M. A., Chen, P. Y., Lopez, M. I., Seki, Y. and Lin, A. Y. M. (2011), “Biological Materials: A Materials Science Approach,” J. Mech. Behav. Biomed. Mater. 4, 626–657.CrossRef Meyers, M. A., Chen, P. Y., Lopez, M. I., Seki, Y. and Lin, A. Y. M. (2011), “Biological Materials: A Materials Science Approach,” J. Mech. Behav. Biomed. Mater. 4, 626–657.CrossRef
go back to reference Mohanty, B., Katti, K. S., Katti, D. R. and Verma, D., 2006, “Dynamic Nanomechanical Response of Nacre,” J. Mater. Res. 21, 2045–2051.CrossRef Mohanty, B., Katti, K. S., Katti, D. R. and Verma, D., 2006, “Dynamic Nanomechanical Response of Nacre,” J. Mater. Res. 21, 2045–2051.CrossRef
go back to reference Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2008) “Tough Bio-inspired Hybrid Materials,” Science 322, 1516–1520.CrossRef Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2008) “Tough Bio-inspired Hybrid Materials,” Science 322, 1516–1520.CrossRef
go back to reference Ortiz, C. and Boyce, M. C. (2008), “Bioinspired Structural Materials,” Science 319, 1053–1054.CrossRef Ortiz, C. and Boyce, M. C. (2008), “Bioinspired Structural Materials,” Science 319, 1053–1054.CrossRef
go back to reference Podsiadlo, P., Paternel, S., Rouillard J. M., Zhang, Z. F., Lee, J., Lee, J. W., Gulari, L. and Kotov, N. A. (2005), “Layer-by-layer Assembly of Nacre-like Nanostructured Composites with Antimicrobial Properties,” Langmuir 21, 11915–11921.CrossRef Podsiadlo, P., Paternel, S., Rouillard J. M., Zhang, Z. F., Lee, J., Lee, J. W., Gulari, L. and Kotov, N. A. (2005), “Layer-by-layer Assembly of Nacre-like Nanostructured Composites with Antimicrobial Properties,” Langmuir 21, 11915–11921.CrossRef
go back to reference Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J. D., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A. and Kotov, N. A. (2007), “Ultrastrong and Stiff Layered Polymer Nanocomposites,” Science 318, 80–83.CrossRef Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J. D., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A. and Kotov, N. A. (2007), “Ultrastrong and Stiff Layered Polymer Nanocomposites,” Science 318, 80–83.CrossRef
go back to reference Podsiadlo, P., Kaushik, A. K., Shim, B. S., Agarwal, A., Tang, Z., Waas, A. M., Arruda, E. M. and Kotov, N. A. (2008), “Can Nature’s Design be Improved Upon? High Strength, Transparent Nacre-like Nanocomposites with Double Network of Sacrificial Cross Links,” J. Phys. Chem. B 112, 14359–14363.CrossRef Podsiadlo, P., Kaushik, A. K., Shim, B. S., Agarwal, A., Tang, Z., Waas, A. M., Arruda, E. M. and Kotov, N. A. (2008), “Can Nature’s Design be Improved Upon? High Strength, Transparent Nacre-like Nanocomposites with Double Network of Sacrificial Cross Links,” J. Phys. Chem. B 112, 14359–14363.CrossRef
go back to reference Ratner, B. D. and Bryant, S. J. (2004), “Biomaterials: Where We Have Been and Where We are Going,” Annu. Rev. Biomed. Eng. 6, 41–75.CrossRef Ratner, B. D. and Bryant, S. J. (2004), “Biomaterials: Where We Have Been and Where We are Going,” Annu. Rev. Biomed. Eng. 6, 41–75.CrossRef
go back to reference Sarikaya, M., Gunnison, K. E., Yasrebi, M. and Aksay, I. A. (1989), “Mechanical Property-Microstructural Relationships in Abalone Shell,” MRS Proc., 174, 109. Sarikaya, M., Gunnison, K. E., Yasrebi, M. and Aksay, I. A. (1989), “Mechanical Property-Microstructural Relationships in Abalone Shell,” MRS Proc., 174, 109.
go back to reference Schäffer, T. E., Ionescu-Zanetti, C., Proksch, R., Fritz, M., Walters, D. A., Almqvist, N., Zaremba, C. M., Belcher, A. M., Smith, B. L., Stucky, G. D., Morse, D. E. and Hansma, P. K. (1997), “Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth Through Mineral Bridges?,” Chem. Mater. 9, 1731–1740.CrossRef Schäffer, T. E., Ionescu-Zanetti, C., Proksch, R., Fritz, M., Walters, D. A., Almqvist, N., Zaremba, C. M., Belcher, A. M., Smith, B. L., Stucky, G. D., Morse, D. E. and Hansma, P. K. (1997), “Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth Through Mineral Bridges?,” Chem. Mater. 9, 1731–1740.CrossRef
go back to reference Song, F., Zhang, X. H. and Bai, Y. L. (2002), “Microstructure and Characteristics in the Organic Matrix Layers of Nacre,” J. Mater. Res. 17, 1567–1570.CrossRef Song, F., Zhang, X. H. and Bai, Y. L. (2002), “Microstructure and Characteristics in the Organic Matrix Layers of Nacre,” J. Mater. Res. 17, 1567–1570.CrossRef
go back to reference Song, F., Soh, A. K. and Bai, Y. L. (2003), “Structural and Mechanical Properties of the Organic Matrix Layers of Nacre,” Biomater. 24, 3623–3631.CrossRef Song, F., Soh, A. K. and Bai, Y. L. (2003), “Structural and Mechanical Properties of the Organic Matrix Layers of Nacre,” Biomater. 24, 3623–3631.CrossRef
go back to reference Sun, J. and Bhushan, B. (2012), “Hierarchical Structure and Mechanical Properties of Nacre: A Review,” RSC Advances 2, 7617–7632.CrossRef Sun, J. and Bhushan, B. (2012), “Hierarchical Structure and Mechanical Properties of Nacre: A Review,” RSC Advances 2, 7617–7632.CrossRef
go back to reference Tang, Z. Y., Kotov, N. A., Magonov, S. and Ozturk, B. (2003), “Nanostructured Artificial Nacre,” Nature Mater. 2, 413–418.CrossRef Tang, Z. Y., Kotov, N. A., Magonov, S. and Ozturk, B. (2003), “Nanostructured Artificial Nacre,” Nature Mater. 2, 413–418.CrossRef
go back to reference Verma, D., Katti, K. and Katti, D. (2007), “Nature of Water in Nacre: A 2D Fourier Transform Infrared Spectroscopic Study,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 784–788.CrossRef Verma, D., Katti, K. and Katti, D. (2007), “Nature of Water in Nacre: A 2D Fourier Transform Infrared Spectroscopic Study,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 784–788.CrossRef
go back to reference Vincent, J. F. V. (1991), Structural Biomaterials, Princeton University Press, Princeton, NJ. Vincent, J. F. V. (1991), Structural Biomaterials, Princeton University Press, Princeton, NJ.
go back to reference Wachtman, J. B. (1996), Mechanical Properties of Ceramics, Wiley-Interscience, New York. Wachtman, J. B. (1996), Mechanical Properties of Ceramics, Wiley-Interscience, New York.
go back to reference Walther, A., Bjurhager, I., Malho, J.-M., Ruokolainen, J., Berglund, L. and Ikkala, O. (2010), “Supramolecular Control of Stiffness and Strength in Lightweight High-performance Nacre-mimetic Paper with Fire-shielding Properties,” Angew. Chem. Int. Ed. Engl. 49, 6448–6453.CrossRef Walther, A., Bjurhager, I., Malho, J.-M., Ruokolainen, J., Berglund, L. and Ikkala, O. (2010), “Supramolecular Control of Stiffness and Strength in Lightweight High-performance Nacre-mimetic Paper with Fire-shielding Properties,” Angew. Chem. Int. Ed. Engl. 49, 6448–6453.CrossRef
go back to reference Wang, C. A., Huang, Y., Zan, Q. F., Guo, H., and Cai, S. Y. (2000), “Biomimetic Structure Design—A Possible Approach to Change the Brittleness of Ceramics in Nature,” Mater. Sci. Eng. C 11, 9–12.CrossRef Wang, C. A., Huang, Y., Zan, Q. F., Guo, H., and Cai, S. Y. (2000), “Biomimetic Structure Design—A Possible Approach to Change the Brittleness of Ceramics in Nature,” Mater. Sci. Eng. C 11, 9–12.CrossRef
go back to reference Wang, J. F., Cheng Q. F. and Tang, Z. Y. (2012), “Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre,” Chem. Soc. Rev. 41, 1111–1129.CrossRef Wang, J. F., Cheng Q. F. and Tang, Z. Y. (2012), “Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre,” Chem. Soc. Rev. 41, 1111–1129.CrossRef
go back to reference Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. and Aksay, I. A. (2001), “Deformation Mechanisms in Nacre,” J. Mater. Res. 16, 2485–2493.CrossRef Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. and Aksay, I. A. (2001), “Deformation Mechanisms in Nacre,” J. Mater. Res. 16, 2485–2493.CrossRef
go back to reference Yourdkhani, M., Pasini, D. and Barthelat, F. (2011), “Multiscale Mechanics and Optimization of Gastropod Shells,” J. Bionic Eng. 8, 357–368.CrossRef Yourdkhani, M., Pasini, D. and Barthelat, F. (2011), “Multiscale Mechanics and Optimization of Gastropod Shells,” J. Bionic Eng. 8, 357–368.CrossRef
go back to reference Zhang, L. and Krstic, V. D. (1995), “High Toughness Silicon Carbide/Graphite Laminar Composite by Slip Casting,” Theor. Appl. Fract. Mech. 24, 13–19.CrossRef Zhang, L. and Krstic, V. D. (1995), “High Toughness Silicon Carbide/Graphite Laminar Composite by Slip Casting,” Theor. Appl. Fract. Mech. 24, 13–19.CrossRef
go back to reference Zhang, S. M., Zhang, J. W., Zhang, Z. J., Dang, H. X., Liu, W. M. and Xue, Q. J. (2004), “Preparation and Characterization of Self-assembled Organic-Inorganic Nacre-like Nanocomposite Thin Films,” Mater. Lett. 58, 2266–2269.CrossRef Zhang, S. M., Zhang, J. W., Zhang, Z. J., Dang, H. X., Liu, W. M. and Xue, Q. J. (2004), “Preparation and Characterization of Self-assembled Organic-Inorganic Nacre-like Nanocomposite Thin Films,” Mater. Lett. 58, 2266–2269.CrossRef
go back to reference Zhang, X., Liu, C. L., Wu, W. J. and Wang, J. F. (2006), “Evaporation-induced Self-assembly of Organic-inorganic Ordered Nanocomposite Thin Films that Mimic Nacre,” Mater. Lett. 60, 2086–2089.CrossRef Zhang, X., Liu, C. L., Wu, W. J. and Wang, J. F. (2006), “Evaporation-induced Self-assembly of Organic-inorganic Ordered Nanocomposite Thin Films that Mimic Nacre,” Mater. Lett. 60, 2086–2089.CrossRef
Metadata
Title
Structure and Mechanical Properties of Nacre
Author
Bharat Bhushan
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71676-3_21

Premium Partners