Skip to main content
Top
Published in: Metallurgist 5-6/2019

24-10-2019

Structure, Mechanical Properties and Fracture Surface Features of Structural Steels Subjected to Deformation-Heat Treatment

Authors: G. S. Shaimanov, M. Yu. Simonov, A. S. Pertsev, Yu. Simonov

Published in: Metallurgist | Issue 5-6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A comparative study is made of the structure, mechanical properties and crack growth micromechanisms of 09G2S, 25 and 35X steel pipes after different versions of deformation and heat treatment, including cold plastic deformation of highly tempered material by radial forging and subsequent annealing. It is established that the maximum strength of the test steels is achieved after cold radial forging (CRF) with a degree of deformation of 55% and subsequent annealing at 300 °C. It is shown that CRF and annealing at 600 °C leads to formation of an ultra-fine-grained structure as a result of which reliability properties are achieved similar to a highly tempered condition with retention of improved strength properties. Features of the structure are revealed that is formed during CRF. The micromechanism of crack growth after heat and deformation-heat treatment is studied. Analysis is provided for elements of the failure surface after dynamic tests.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. V. Stolyarov, “Deformation methods for structural refinement,” Vestn. Nauch.-Techn. Razvitiya, No. 4(68), 29–36 (2013). V. V. Stolyarov, “Deformation methods for structural refinement,” Vestn. Nauch.-Techn. Razvitiya, No. 4(68), 29–36 (2013).
2.
go back to reference K. Nakashima, Z. Horita, M. Nemoto, and T. G. Langton, “Development of a multi-pass facility for equal-channel angular pressing to high total strains,” Mater. Sci. Eng. A281, 1–2, 82–87.CrossRef K. Nakashima, Z. Horita, M. Nemoto, and T. G. Langton, “Development of a multi-pass facility for equal-channel angular pressing to high total strains,” Mater. Sci. Eng. A281, 1–2, 82–87.CrossRef
3.
go back to reference M. Yu. Mirashkin, E. B. Bobruk, A. R. Kil’mametov, and R. Z. Valiev, “Features of the structure and mechanical properties of aluminum alloy 6061 subjected to treatment equal-channel angular extrusion in parallel channels,” Fiz. Metall. Metalloved.,108, No. 4, 439–447 (2009). M. Yu. Mirashkin, E. B. Bobruk, A. R. Kil’mametov, and R. Z. Valiev, “Features of the structure and mechanical properties of aluminum alloy 6061 subjected to treatment equal-channel angular extrusion in parallel channels,” Fiz. Metall. Metalloved.,108, No. 4, 439–447 (2009).
4.
go back to reference G. I. Raab, “Plastic flow at equal channel angular processing in parallel channels,” Mater. Sci. Eng. A, 410–411, 230–233 (2005).CrossRef G. I. Raab, “Plastic flow at equal channel angular processing in parallel channels,” Mater. Sci. Eng. A, 410–411, 230–233 (2005).CrossRef
5.
go back to reference R. Z. Valiev, M. Yu. Muraskin, E. V. Bobru, and G. I. Raab, “Grain refinement and mechanical behavior of the Al alloy, subjected to the new SPD technique,” Mater. Trans., 50, 87–91 (2009).CrossRef R. Z. Valiev, M. Yu. Muraskin, E. V. Bobru, and G. I. Raab, “Grain refinement and mechanical behavior of the Al alloy, subjected to the new SPD technique,” Mater. Trans., 50, 87–91 (2009).CrossRef
6.
go back to reference I. Sabirov, M. T. Perez-Prado, M. Murashkin, et al., “Application of equal channel angular pressing with parallel channels for grain refinement in aluminium alloys and its effect on deformation behavior,” Int. J. Mater. Form., 3, No. 1, 14–411 (2010).CrossRef I. Sabirov, M. T. Perez-Prado, M. Murashkin, et al., “Application of equal channel angular pressing with parallel channels for grain refinement in aluminium alloys and its effect on deformation behavior,” Int. J. Mater. Form., 3, No. 1, 14–411 (2010).CrossRef
7.
go back to reference P. U. Bridgeman, Study of Large Plastic Deformation and Failure: Effect of High Hydrostatic Pressure on Material Mechanical Properties [Russian translation], Knizh. Dom. Liberkom, Moscow (2010). P. U. Bridgeman, Study of Large Plastic Deformation and Failure: Effect of High Hydrostatic Pressure on Material Mechanical Properties [Russian translation], Knizh. Dom. Liberkom, Moscow (2010).
8.
go back to reference V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, “Plastic treatment f metals by simple shear,” Izv. Akad. Nauk SSSR, Metally., No. 1, 115 (181). V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, “Plastic treatment f metals by simple shear,” Izv. Akad. Nauk SSSR, Metally., No. 1, 115 (181).
9.
go back to reference S. Ferrase, V. M. Segal, K. T. Harywig, and R. E. Goforth, “Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion,” Metall. Mater. Trans., 28A, 1047–1057 (1997). S. Ferrase, V. M. Segal, K. T. Harywig, and R. E. Goforth, “Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion,” Metall. Mater. Trans., 28A, 1047–1057 (1997).
10.
go back to reference N. A. Koryakin, A. P. Nishta, and V. B. Federov, “Technology and equipment of stamping with rolling,” Res. Tekhnol. Proizvod. Obrab. Davleniem Materiaov Mashin., No. 1(14), 99–108 (2013). N. A. Koryakin, A. P. Nishta, and V. B. Federov, “Technology and equipment of stamping with rolling,” Res. Tekhnol. Proizvod. Obrab. Davleniem Materiaov Mashin., No. 1(14), 99–108 (2013).
11.
go back to reference V. A. Tyrin, V. A. Lazorkin, and I. A. Pospelov, Forging in Radial Reduction Machines [in Russian], Mashinostroenie, Moscow (1990). V. A. Tyrin, V. A. Lazorkin, and I. A. Pospelov, Forging in Radial Reduction Machines [in Russian], Mashinostroenie, Moscow (1990).
12.
go back to reference M. Yu. Simonov, G. S. Shaimanov, A. S. Pertsev, et al., “Effect of structure on dynamic crack resistance and features of crack growth micromechanism for steel 35X after cold radial forging,” Metall. Term. Obrab. Metallov., No. 2 (728), 24–32 (2016). M. Yu. Simonov, G. S. Shaimanov, A. S. Pertsev, et al., “Effect of structure on dynamic crack resistance and features of crack growth micromechanism for steel 35X after cold radial forging,” Metall. Term. Obrab. Metallov., No. 2 (728), 24–32 (2016).
13.
go back to reference P. S. Stepin and G. I. Raab, “Study of the potential of radial forging for preparing materials with an ultra-fine grained structure,” KShP OMD, No. 4, 24–37 (2012) P. S. Stepin and G. I. Raab, “Study of the potential of radial forging for preparing materials with an ultra-fine grained structure,” KShP OMD, No. 4, 24–37 (2012)
14.
go back to reference E. E. Deryugin, B. I. Suvorov, and L. S. Derevyagina, “Crack resistance of materials with an ultrafine grained structure,” Pis’ma Materialakh, 3, No 2(10), 106–109 (2013). E. E. Deryugin, B. I. Suvorov, and L. S. Derevyagina, “Crack resistance of materials with an ultrafine grained structure,” Pis’ma Materialakh, 3, No 2(10), 106–109 (2013).
15.
go back to reference M. Yu. Simonov, G. S. Shaimanov, A. S. Persev, et al., “Dynamic crack resistance and structure of pipe billet of steel 09G2S after deformation heat treatment,” Metall. Term.Obrab. Metallov, No. 6 (744), 64–71 (2017). M. Yu. Simonov, G. S. Shaimanov, A. S. Persev, et al., “Dynamic crack resistance and structure of pipe billet of steel 09G2S after deformation heat treatment,” Metall. Term.Obrab. Metallov, No. 6 (744), 64–71 (2017).
16.
go back to reference M. Yu. Simonov, Yu. N. Simonov, and G. S. Shaimanov, “Structure, dynamic crack resistance and crack growth micro-mechanics in pie billets after deformation heat treatment,” Fiz. Metall. Matalloved., 119, No. 1, 54–62 (2018). M. Yu. Simonov, Yu. N. Simonov, and G. S. Shaimanov, “Structure, dynamic crack resistance and crack growth micro-mechanics in pie billets after deformation heat treatment,” Fiz. Metall. Matalloved., 119, No. 1, 54–62 (2018).
17.
go back to reference A. N. Balakhnin, D. O. Panov, A. S. Pertsev, et al., “Evolution f structure and mechanical properties of low-carbon martensite with cold radial forging and subsequent heat treatment,” Materialoved, No. 2, 19–26 (2015). A. N. Balakhnin, D. O. Panov, A. S. Pertsev, et al., “Evolution f structure and mechanical properties of low-carbon martensite with cold radial forging and subsequent heat treatment,” Materialoved, No. 2, 19–26 (2015).
18.
go back to reference M. N. Georgiev, M. Yu. Simonov, and Yu. N, Simonov, “Evaluation of the work for failure of impact specimens with side notches,” Zavod. Lab., Diagnoz. Materialov, 78, No. 9, 56–61 (2012). M. N. Georgiev, M. Yu. Simonov, and Yu. N, Simonov, “Evaluation of the work for failure of impact specimens with side notches,” Zavod. Lab., Diagnoz. Materialov, 78, No. 9, 56–61 (2012).
19.
go back to reference M. Yu. Simonov, Yu. N, Simonov, A. M. Khanov, and G. S. Shaimanov, “Structured, dynamic crack resistance, and failure mechanism for quenched and tempered structural steels,” Metall. Mater. Metallov, No. 11 (689), 32–39 (2012). M. Yu. Simonov, Yu. N, Simonov, A. M. Khanov, and G. S. Shaimanov, “Structured, dynamic crack resistance, and failure mechanism for quenched and tempered structural steels,” Metall. Mater. Metallov, No. 11 (689), 32–39 (2012).
20.
go back to reference M. Yu. Simonov, M. N. Gergiev, Yu. N. Simonov, et al., “Evaluation of the parameters of fracture relief components for highly ductile structural steel 09G2S after dynamic testing,” Metall. Obrab. Metallov., No. 11 (689), 45–50 (2012). M. Yu. Simonov, M. N. Gergiev, Yu. N. Simonov, et al., “Evaluation of the parameters of fracture relief components for highly ductile structural steel 09G2S after dynamic testing,” Metall. Obrab. Metallov., No. 11 (689), 45–50 (2012).
21.
go back to reference I. Yu. Pymintsev, A. M. Mal’tseva, A. M. Garas’ev, et al., “Structure and properties of low-carbon pipe steels subjected to pneumatic testing,” Stal’, No. 2, 75–81 (2011). I. Yu. Pymintsev, A. M. Mal’tseva, A. M. Garas’ev, et al., “Structure and properties of low-carbon pipe steels subjected to pneumatic testing,” Stal’, No. 2, 75–81 (2011).
22.
go back to reference G. Mannucci and G. Demofonti, “Control of ductile fracture propagation in X80 gas linepipe,” Proc. of Int. Pipeline Technology Conf. (Beijing, 2010). G. Mannucci and G. Demofonti, “Control of ductile fracture propagation in X80 gas linepipe,” Proc. of Int. Pipeline Technology Conf. (Beijing, 2010).
23.
go back to reference V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Effect of chemical composition and structure on mechanical properties of low-alloy weldable steels after thermomechanical treatment,” Metallurgist, 60, No. 5–6, 511–518 (2016).CrossRef V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Effect of chemical composition and structure on mechanical properties of low-alloy weldable steels after thermomechanical treatment,” Metallurgist, 60, No. 5–6, 511–518 (2016).CrossRef
24.
go back to reference V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Study of impact toughness anisotropy and tendency towards lamination of strenx 650 mc and strenx 700 mc steels after thermomechanical rolling,” Metallurgist, 62, No. 7–8, 753–765 (2018).CrossRef V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Study of impact toughness anisotropy and tendency towards lamination of strenx 650 mc and strenx 700 mc steels after thermomechanical rolling,” Metallurgist, 62, No. 7–8, 753–765 (2018).CrossRef
25.
go back to reference V. A. Khotinov, A. O. Struin, A. B. Arabei, et al., “Features of pipe steel failure of strength class X80 (K65),” Nauka, Tekhn. Gaz. Prom., No. 4, 790–86 (2011). V. A. Khotinov, A. O. Struin, A. B. Arabei, et al., “Features of pipe steel failure of strength class X80 (K65),” Nauka, Tekhn. Gaz. Prom., No. 4, 790–86 (2011).
26.
go back to reference V. M. Farber, V. A. Khotinov, A. N. Morozova, et al., “Diagnosis of fractures and energy content of failure for high-strength steels of instrument tests for impact bending,” Metall. Term. Obrab. Metallov., No. 6 (720), 22–25 (2015). V. M. Farber, V. A. Khotinov, A. N. Morozova, et al., “Diagnosis of fractures and energy content of failure for high-strength steels of instrument tests for impact bending,” Metall. Term. Obrab. Metallov., No. 6 (720), 22–25 (2015).
27.
go back to reference V. M. Farber, V. A. Khotinov, A. N. Morozova, and T. Martin, “Cleavage and contribution to impact strength of steels of strength class K65 (X80),” Metall. Term. Obrab. Metalllov., No. 8, 39–44 (2015). V. M. Farber, V. A. Khotinov, A. N. Morozova, and T. Martin, “Cleavage and contribution to impact strength of steels of strength class K65 (X80),” Metall. Term. Obrab. Metalllov., No. 8, 39–44 (2015).
28.
go back to reference F. Z. Buchashev, “Features of the intensity of metal plastic deformation and structure formation,” Nuach. Tekhn. Vedom. SpBGU, Fiz.-Mat. Nauki, No. 182, 204–212, (2013). F. Z. Buchashev, “Features of the intensity of metal plastic deformation and structure formation,” Nuach. Tekhn. Vedom. SpBGU, Fiz.-Mat. Nauki, No. 182, 204–212, (2013).
29.
go back to reference V. M. Schastlivtsev, T. I. Tabatchikova, I. A. Yakovleva, et al., “Effect of texture on cold resistance of welded steels subjected to thermomechanical treatment,” Deform. Razrush. Materialov, No. 11, 34–40 (2010). V. M. Schastlivtsev, T. I. Tabatchikova, I. A. Yakovleva, et al., “Effect of texture on cold resistance of welded steels subjected to thermomechanical treatment,” Deform. Razrush. Materialov, No. 11, 34–40 (2010).
30.
go back to reference T. Inoue, F. Yin, Y. Kimura, et al, “Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling,” Met. Trans. A, 41A, 341–355 (2010).CrossRef T. Inoue, F. Yin, Y. Kimura, et al, “Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling,” Met. Trans. A, 41A, 341–355 (2010).CrossRef
Metadata
Title
Structure, Mechanical Properties and Fracture Surface Features of Structural Steels Subjected to Deformation-Heat Treatment
Authors
G. S. Shaimanov
M. Yu. Simonov
A. S. Pertsev
Yu. Simonov
Publication date
24-10-2019
Publisher
Springer US
Published in
Metallurgist / Issue 5-6/2019
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-019-00850-7

Other articles of this Issue 5-6/2019

Metallurgist 5-6/2019 Go to the issue

Premium Partners