Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Structure of Satellite Navigation Signals

Authors : Zheng Yao, Mingquan Lu

Published in: Next-Generation GNSS Signal Design

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter begins with explaining the basic principles of satellite navigation so as to clarify the missions and functions to be carried out by a navigation signal. Then, using the structural elements of satellite navigation signals as the main thread, this chapter systematically expound on the important basic concepts in the design of the signals. We also discuss the effects of various factors on system performance, such as center frequency, transmission power, polarization characteristics, spreading modulation, spreading code, message structure, and the multiplexing of signals. This chapter serves as the basis for subsequent chapters. Since the elements that make up the satellite navigation signal are closely related, the design of many elements of the signal is carried out in the form of trade-offs and compromises. Therefore, it is necessary to have a systematic understanding of the structure of the entire signal before conducting in-depth research on each aspect.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
To compensate for the relativistic effect, the actual frequency on the satellite is 10.22999999543 MHz.
 
2
Thermal noise tracking threshold is the minimum CNR to ensure that the 3-\(\sigma \) jitter of the loop tracking error does not exceed the quasi-linear range of the phase detector. It is an empirical indicator of the robustness of the loop under thermal noise.
 
3
The service was previously called the safety of life survive (SoL) service by the Galileo system.
 
Literature
1.
go back to reference Misra P, Enge P (2006) Global positioning system: signals, measurements and performance, 2nd edn. Ganga-Jamuna Press, Kathmandu Misra P, Enge P (2006) Global positioning system: signals, measurements and performance, 2nd edn. Ganga-Jamuna Press, Kathmandu
2.
go back to reference Kaplan ED, Hegarty CJ (2006) Understanding GPS: principles and applications. Norwood, Artech House, MA Kaplan ED, Hegarty CJ (2006) Understanding GPS: principles and applications. Norwood, Artech House, MA
3.
go back to reference JW Betz (2013) Something old, something new: signal structures for satellite-based navigation: past, present, and future. Inside GNSS, pp 34–42 JW Betz (2013) Something old, something new: signal structures for satellite-based navigation: past, present, and future. Inside GNSS, pp 34–42
4.
go back to reference Klobuchar J (1996) Ionospheric effects on GPS. In: Parkinson B, James J, Spilker J (eds) Global positioning system: theory and applications, vol I. American Institute of Aeronautics and Astronautics Inc, Washington Klobuchar J (1996) Ionospheric effects on GPS. In: Parkinson B, James J, Spilker J (eds) Global positioning system: theory and applications, vol I. American Institute of Aeronautics and Astronautics Inc, Washington
5.
go back to reference EU (2010) European GNSS (Galileo) Open service signal in space interface control document, Issue 1 EU (2010) European GNSS (Galileo) Open service signal in space interface control document, Issue 1
6.
go back to reference Branets V, Mikhailov M, Stishov Y et al (1999) The Soyuz-Mir orbital flight GPS/GLONASS experiment. In: Proceedings of the 12th international technical meeting of the satellite division of the institute of navigation, TN, Nashville, pp 2303–2312 Branets V, Mikhailov M, Stishov Y et al (1999) The Soyuz-Mir orbital flight GPS/GLONASS experiment. In: Proceedings of the 12th international technical meeting of the satellite division of the institute of navigation, TN, Nashville, pp 2303–2312
7.
go back to reference Irsigler M, Hein GW, Schmitz-Peiffer A (2004) Use of C-band frequencies for satellite navigation: benefits and drawbacks. GPS Sol 8(3):119–139CrossRef Irsigler M, Hein GW, Schmitz-Peiffer A (2004) Use of C-band frequencies for satellite navigation: benefits and drawbacks. GPS Sol 8(3):119–139CrossRef
8.
go back to reference IS-GPS-705 (2005) NAVSTAR GPS space segment/navigation L5 User interfaces IS-GPS-705 (2005) NAVSTAR GPS space segment/navigation L5 User interfaces
9.
go back to reference Campbell C (1998) Surface acoustic wave devices for mobile and wireless communications. Academic, New York Campbell C (1998) Surface acoustic wave devices for mobile and wireless communications. Academic, New York
10.
go back to reference Cobb H (1997) GPS pseudolites: theory, design, and applications, PhD Dissertation, Stanford University Cobb H (1997) GPS pseudolites: theory, design, and applications, PhD Dissertation, Stanford University
11.
go back to reference Welch LR (1974) Lower bounds on the minimum correlation of signals. IEEE Trans Inf Theory IT-20 Welch LR (1974) Lower bounds on the minimum correlation of signals. IEEE Trans Inf Theory IT-20
12.
go back to reference Winkel JO (2006) Spreading codes for a satellite navigation system, Patent number WO2006063613 A1. Accessed 22 Jun 2006 Winkel JO (2006) Spreading codes for a satellite navigation system, Patent number WO2006063613 A1. Accessed 22 Jun 2006
13.
go back to reference Rushanan JJ (2007) The spreading and overlay codes for the L1C signal. ION NTM. San Diego, CA, pp 539–547 Rushanan JJ (2007) The spreading and overlay codes for the L1C signal. ION NTM. San Diego, CA, pp 539–547
14.
go back to reference Pratt R, Powe M (2005) Concatenated truncated codes: structure performance and mechanization. In: ION-NTM-2005, Institute of Navigation Pratt R, Powe M (2005) Concatenated truncated codes: structure performance and mechanization. In: ION-NTM-2005, Institute of Navigation
15.
go back to reference IS-GPS-800 (2006) Navstar GPS space segment/user L1C interfaces IS-GPS-800 (2006) Navstar GPS space segment/user L1C interfaces
16.
go back to reference Borio D (2011) M-sequence and secondary code constraints for GNSS signal acquisition. IEEE Trans Aerosp Electron Syst 47(2):928–945CrossRef Borio D (2011) M-sequence and secondary code constraints for GNSS signal acquisition. IEEE Trans Aerosp Electron Syst 47(2):928–945CrossRef
17.
go back to reference Shivaramaiah NC, Dempster AG Rizos C (2008) “Exploiting the secondary codes to improve signal acquisition performance in Galileo receivers. In: Proceedings of ION GNSS, pp 1497–1506 Shivaramaiah NC, Dempster AG Rizos C (2008) “Exploiting the secondary codes to improve signal acquisition performance in Galileo receivers. In: Proceedings of ION GNSS, pp 1497–1506
18.
go back to reference IS-GPS-200D (2006) Navstar GPS space segment/navigation user interfaces IS-GPS-200D (2006) Navstar GPS space segment/navigation user interfaces
19.
go back to reference Ward PW, Betz JW, Hegarty CJ (2006) Satellite signal acquisition, tracking, and data demodulation. In: Understanding GPS principles and applications, pp 174–175 Ward PW, Betz JW, Hegarty CJ (2006) Satellite signal acquisition, tracking, and data demodulation. In: Understanding GPS principles and applications, pp 174–175
20.
go back to reference Julien O (2005) Carrier-phase tracking of future data/pilot signals. In: Proceedings of ION GNSS, Long Beach, CA, pp 113–124 Julien O (2005) Carrier-phase tracking of future data/pilot signals. In: Proceedings of ION GNSS, Long Beach, CA, pp 113–124
21.
go back to reference Hegarty C et al (1999) Evaluation of the proposed signal structure for the new civil GPS signal at 1176.45 MHz. In: WN99W0000034, The MITRE Corporation Hegarty C et al (1999) Evaluation of the proposed signal structure for the new civil GPS signal at 1176.45 MHz. In: WN99W0000034, The MITRE Corporation
22.
go back to reference Proakis J (2001) Digital communications, 4th edn. McGraw-Hill, BostonMATH Proakis J (2001) Digital communications, 4th edn. McGraw-Hill, BostonMATH
23.
go back to reference Betz JW, Blanco MA, Cahn CR et al (2006) Description of the L1C Signal. ION GNSS 19th international technical meeting of the satellite division. TX, US, Fort Worth, pp 2080–2091 Betz JW, Blanco MA, Cahn CR et al (2006) Description of the L1C Signal. ION GNSS 19th international technical meeting of the satellite division. TX, US, Fort Worth, pp 2080–2091
24.
go back to reference Betz J, Cahn CR, Dafesh PA et al (2006) L1C Signal design options. National technical meeting of the Institute of Navigation. CA, Monterey, pp 685–697 Betz J, Cahn CR, Dafesh PA et al (2006) L1C Signal design options. National technical meeting of the Institute of Navigation. CA, Monterey, pp 685–697
25.
go back to reference Yao Z, Lu M (2012) Dual-frequency constant envelope multiplex with non-equal power allocation for GNSS. Electron Lett 48(25):1624–1625CrossRef Yao Z, Lu M (2012) Dual-frequency constant envelope multiplex with non-equal power allocation for GNSS. Electron Lett 48(25):1624–1625CrossRef
26.
go back to reference Yao Z, Zhang J, Lu M (2016) ACE-BOC: dual-frequency constant envelope multiplexing for satellite navigation. IEEE Trans Aerosp Electron Syst 52(1) Yao Z, Zhang J, Lu M (2016) ACE-BOC: dual-frequency constant envelope multiplexing for satellite navigation. IEEE Trans Aerosp Electron Syst 52(1)
27.
go back to reference Russian Space Agency (2002) GLONASS interface control document. Ver 5: Russian Space Agency (2002) GLONASS interface control document. Ver 5:
28.
go back to reference Paris R, Fernandez V, Cueto M et al (2007) Towards a Galileo navigation message. In: European navigation conference, Switzerland, pp 456–467. Accessed 29 May–1 June 2007 Paris R, Fernandez V, Cueto M et al (2007) Towards a Galileo navigation message. In: European navigation conference, Switzerland, pp 456–467. Accessed 29 May–1 June 2007
29.
go back to reference Dafesh PA, Valles EL, Hsu J, Skylar DJ, Zapata LF, Cahn CR (2007) Data message performance for the future L1C GPS signal. ION GNSS 20th international technical meeting of the satellite division. TX, US, Fort Worth, pp 2519–2528 Dafesh PA, Valles EL, Hsu J, Skylar DJ, Zapata LF, Cahn CR (2007) Data message performance for the future L1C GPS signal. ION GNSS 20th international technical meeting of the satellite division. TX, US, Fort Worth, pp 2519–2528
Metadata
Title
Structure of Satellite Navigation Signals
Authors
Zheng Yao
Mingquan Lu
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5799-6_2

Premium Partner