Skip to main content
Top

2012 | OriginalPaper | Chapter

Structures and Electric Properties of Semiconductor clusters

Author : Panaghiotis Karamanis

Published in: Handbook of Computational Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Materials that exhibit an electrical resistivity between that of conductor and insulator are called semiconductors. Devices based on semiconductor materials, such as transistors, solar cells, light-emitting diodes, digital integrated circuits, solar photovoltaics, and much more, are the base of modern electronics. Silicon is used in most of the semiconductor devices while other materials such as germanium, gallium arsenide, and silicon carbide are used for specialized applications. The obvious theoretical and technological importance of semiconductor materials has led to phenomenal success in making semiconductors with near-atomic precision such as quantum wells, wires, and dots. As a result, there is a lot of undergoing research in semiconductor clusters of small and medium sizes both experimentally and by means of computational chemistry since the miniaturization of devices still continues. In the next pages, we are going to learn which the most studied semiconductor clusters are, we will explore their basic structural features and visit some of the most representative ab initio studies that are considered as works of reference in this research realm. Also, we are going to be introduced to the theory of the electric properties applied in the case of clusters by visiting some of the most illustrative studies into this research area. It is one of the purposes of this presentation to underscore the strong connection between the electric properties of clusters and their structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adolph, B., & Bechstedt, F. (1998). Ab initio second-harmonic susceptibilities of semiconductors: generalized tetrahedron method and quasiparticle effects.Physical Review B - Condensed Matter and Materials Physics, 57(11), 6519–6526. Adolph, B., & Bechstedt, F. (1998). Ab initio second-harmonic susceptibilities of semiconductors: generalized tetrahedron method and quasiparticle effects.Physical Review B - Condensed Matter and Materials Physics, 57(11), 6519–6526.
go back to reference Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933–937. Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933–937.
go back to reference Al-Laham, M. A., & Raghavachari, K. (1991). Theoretical study of small gallium arsenide clusters. Chemical Physics Letters, 187(1–2), 13–20. Al-Laham, M. A., & Raghavachari, K. (1991). Theoretical study of small gallium arsenide clusters. Chemical Physics Letters, 187(1–2), 13–20.
go back to reference Al-Laham, M. A., & Raghavachari, K. (1993). Theoretical study of Ga\(_{4}\)As\(_{4}\), Al\(_{4}\)P\(_{4}\), and Mg\(_{4}\)S\(_{4}\) clusters. Journal of Chemical Physics, 98(11), 8770–8776. Al-Laham, M. A., & Raghavachari, K. (1993). Theoretical study of Ga\(_{4}\)As\(_{4}\), Al\(_{4}\)P\(_{4}\), and Mg\(_{4}\)S\(_{4}\) clusters. Journal of Chemical Physics, 98(11), 8770–8776.
go back to reference An, W., Gao, Y., Bulusu, S., & Zeng, X. (2005). Ab initio calculation of bowl, cage, and ring isomers of C\(_{20}\) and C\(_{20}^{-}\). Journal of Chemical Physics, 122, 204109/1–204109/8. An, W., Gao, Y., Bulusu, S., & Zeng, X. (2005). Ab initio calculation of bowl, cage, and ring isomers of C\(_{20}\) and C\(_{20}^{-}\). Journal of Chemical Physics, 122, 204109/1–204109/8.
go back to reference Avramopoulos, A., Reis, H., Li, J., & Papadopoulos, M. G. (2004). The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study.Journal of the American Chemical Society, 126(19), 6179–6184. Avramopoulos, A., Reis, H., Li, J., & Papadopoulos, M. G. (2004). The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study.Journal of the American Chemical Society, 126(19), 6179–6184.
go back to reference Avramov, P. V., Fedorov, D. G., Sorokin, P. B., Chernozatonskii, L. A., & Gordon, M. S. (2007). Atomic and electronic structure of new hollow-based symmetric families of silicon nanoclusters. Journal of Physical Chemistry C, 111(51), 18824–18830. Avramov, P. V., Fedorov, D. G., Sorokin, P. B., Chernozatonskii, L. A., & Gordon, M. S. (2007). Atomic and electronic structure of new hollow-based symmetric families of silicon nanoclusters. Journal of Physical Chemistry C, 111(51), 18824–18830.
go back to reference Backer, J. A. (1997). Molecular beam studies on semiconductor clusters: polarizabilities and chemical bonding.Angewandte Chemie (International Edition in English), 36(13–14), 1390–1404. Backer, J. A. (1997). Molecular beam studies on semiconductor clusters: polarizabilities and chemical bonding.Angewandte Chemie (International Edition in English), 36(13–14), 1390–1404.
go back to reference Bai, J., Cui, L.-F., Wang, J., Yoo, S., Li, X., & Jellinek, J., et al. (2006). Structural evolution of anionic silicon clusters Si\(_{N}\)(20 ≤ N ≤ 45). Journal of Physical Chemistry A, 110(3), 908–912. Bai, J., Cui, L.-F., Wang, J., Yoo, S., Li, X., & Jellinek, J., et al. (2006). Structural evolution of anionic silicon clusters Si\(_{N}\)(20 ≤ N ≤ 45). Journal of Physical Chemistry A, 110(3), 908–912.
go back to reference Bazterra, V. E., Caputo, M. C., Ferraro, M. B., & Fuentealba, P. (2002). On the theoretical determination of the static dipole polarizability of intermediate size silicon clusters.Journal of Chemical Physics, 117(24), 11158–11165. Bazterra, V. E., Caputo, M. C., Ferraro, M. B., & Fuentealba, P. (2002). On the theoretical determination of the static dipole polarizability of intermediate size silicon clusters.Journal of Chemical Physics, 117(24), 11158–11165.
go back to reference Bazterra, V. E., Oña, O., Caputo, M. C., Ferraro, M. B., Fuentealba, P., & Facelli, J. C. (2004). Modified genetic algorithms to model cluster structures in medium-size silicon clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 69(5B), 053202/1–053202/7. Bazterra, V. E., Oña, O., Caputo, M. C., Ferraro, M. B., Fuentealba, P., & Facelli, J. C. (2004). Modified genetic algorithms to model cluster structures in medium-size silicon clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 69(5B), 053202/1–053202/7.
go back to reference Bechstedt, F., Adolph, B., & Schmidt, W. G. (1999). Ab initio calculation of linear and nonlinear optical properties of semiconductor structures. Brazilian Journal of Physics, 29(4), 643–651. Bechstedt, F., Adolph, B., & Schmidt, W. G. (1999). Ab initio calculation of linear and nonlinear optical properties of semiconductor structures. Brazilian Journal of Physics, 29(4), 643–651.
go back to reference Behrman, E. C., Foehrweiser, R. K., Myers, J. R., French, B. R., & Zandler, M. E. (1994). Possibility of stable spheroid molecules of ZnO. Physical Review A, 49(3), R1543–R1549. Behrman, E. C., Foehrweiser, R. K., Myers, J. R., French, B. R., & Zandler, M. E. (1994). Possibility of stable spheroid molecules of ZnO. Physical Review A, 49(3), R1543–R1549.
go back to reference Bergfeld, S., & Daum, W. (2003). Second-harmonic generation in GaAs: experiment versus theoretical predictions of \({\chi }_{xyz}^{(2)}\). Physical Review Letters, 90(3), 036801/1–036801/4. Bergfeld, S., & Daum, W. (2003). Second-harmonic generation in GaAs: experiment versus theoretical predictions of \({\chi }_{xyz}^{(2)}\). Physical Review Letters, 90(3), 036801/1–036801/4.
go back to reference Bersuker, I. B. (2001) Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. Chemical Reviews, 101(4), 1067–1114. Bersuker, I. B. (2001) Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. Chemical Reviews, 101(4), 1067–1114.
go back to reference Biswas, R., & Hamann, D. R. (1986). Simulated annealing of silicon atom clusters in langevin molecular dynamics. Physical Review B, 34(2), 895–901. Biswas, R., & Hamann, D. R. (1986). Simulated annealing of silicon atom clusters in langevin molecular dynamics. Physical Review B, 34(2), 895–901.
go back to reference Bishop, D. M., Kirtman, B., & Champagne, B. (1997). Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. Journal of Chemical Physics, 107(15), 5780–5787. Bishop, D. M., Kirtman, B., & Champagne, B. (1997). Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. Journal of Chemical Physics, 107(15), 5780–5787.
go back to reference Blaisten-Barojas, E., & Levesque, D. (1986). Molecular-dynamics simulation of silicon clusters. Physical Review B, 34(6), 3910–3916. Blaisten-Barojas, E., & Levesque, D. (1986). Molecular-dynamics simulation of silicon clusters. Physical Review B, 34(6), 3910–3916.
go back to reference Bloembergen, N. (1996). In Nonlinear optics (4th ed.). Singapore: World Scientific. Bloembergen, N. (1996). In Nonlinear optics (4th ed.). Singapore: World Scientific.
go back to reference Brédas, J. L., Adant, C., Tackx, P., Persoons, A., & Pierce, B. M. (1994). Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chemical Reviews, 94(1), 243–278. Brédas, J. L., Adant, C., Tackx, P., Persoons, A., & Pierce, B. M. (1994). Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chemical Reviews, 94(1), 243–278.
go back to reference Bruchez Jr., M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385), 2013–2016. Bruchez Jr., M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385), 2013–2016.
go back to reference Buckingham, A. D. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics, 12, 107–142. Buckingham, A. D. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics, 12, 107–142.
go back to reference Butcher P. N., & Cotter, D. (1990). The elements Of nonlinear optics. Cambridge: Cambridge University Press. Butcher P. N., & Cotter, D. (1990). The elements Of nonlinear optics. Cambridge: Cambridge University Press.
go back to reference Calarco, T., Datta, A., Fedichey, P., Pazy, E., & Zoller, P. (2003). Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence. Physical Review A - Atomic, Molecular, and Optical Physics, 68(1), 012310/1–012310/21. Calarco, T., Datta, A., Fedichey, P., Pazy, E., & Zoller, P. (2003). Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence. Physical Review A - Atomic, Molecular, and Optical Physics, 68(1), 012310/1–012310/21.
go back to reference Castro, A., Marques, M. A. L., Alonso, J. A., Bertsch, G. F., Yabana, K., & Rubio, A. (2002). Can optical spectroscopy directly elucidate the ground state of C20?Journal of Chemical Physics, 116(5), 1930–1933. Castro, A., Marques, M. A. L., Alonso, J. A., Bertsch, G. F., Yabana, K., & Rubio, A. (2002). Can optical spectroscopy directly elucidate the ground state of C20?Journal of Chemical Physics, 116(5), 1930–1933.
go back to reference Champagne, B., Spassova, M., Jadin, J.-B., & Kirtman, B. (2002). Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains.Journal of Chemical Physics, 116(9), 3935–3946. Champagne, B., Spassova, M., Jadin, J.-B., & Kirtman, B. (2002). Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains.Journal of Chemical Physics, 116(9), 3935–3946.
go back to reference Chen, W., Zhang, J. Z., & Joly, A. G. (2004). Optical properties and potential applications of doped semiconductor nanoparticles. Journal of Nanoscience and Nanotechnology, 4(8), 919–947. Chen, W., Zhang, J. Z., & Joly, A. G. (2004). Optical properties and potential applications of doped semiconductor nanoparticles. Journal of Nanoscience and Nanotechnology, 4(8), 919–947.
go back to reference Costales, A., Kandalam, A. K., Franco, R., & Pandey, R. (2002). Theoretical study of structural and vibrational properties of (AlP)\(_{n}\), (AlAs)\(_{n}\), (GaP)\(_{n}\), (GaAs)\(_{n}\), (InP)\(_{n}\), and (InAs)\(_{n}\) clusters with n = 1, 2, 3. Journal of Physical Chemistry B, 106(8), 1940–1944. Costales, A., Kandalam, A. K., Franco, R., & Pandey, R. (2002). Theoretical study of structural and vibrational properties of (AlP)\(_{n}\), (AlAs)\(_{n}\), (GaP)\(_{n}\), (GaAs)\(_{n}\), (InP)\(_{n}\), and (InAs)\(_{n}\) clusters with n = 1, 2, 3. Journal of Physical Chemistry B, 106(8), 1940–1944.
go back to reference Deglmann, P., Ahlrichs, R., & Tsereteli, K. (2002). Theoretical studies of ligand-free cadmium selenide and related semiconductor clusters. Journal of Chemical Physics, 116(4), 1585–1597. Deglmann, P., Ahlrichs, R., & Tsereteli, K. (2002). Theoretical studies of ligand-free cadmium selenide and related semiconductor clusters. Journal of Chemical Physics, 116(4), 1585–1597.
go back to reference Deng, K., Yang, J., & Chan, C. T. (2000). Calculated polarizabilities of small S clusters. PhysicalReview A - Atomic, Molecular, and Optical Physics, 61 (2), 252011–252014. Deng, K., Yang, J., & Chan, C. T. (2000). Calculated polarizabilities of small S clusters. PhysicalReview A - Atomic, Molecular, and Optical Physics, 61 (2), 252011–252014.
go back to reference Dugourd, P., Hudgins, R. R., Tenenbaum, J. M., & Jarrold, M. F. (1998). Observation of new ring isomers for carbon cluster anions. Physical Review Letters, 80(19), 4197–4200. Dugourd, P., Hudgins, R. R., Tenenbaum, J. M., & Jarrold, M. F. (1998). Observation of new ring isomers for carbon cluster anions. Physical Review Letters, 80(19), 4197–4200.
go back to reference Feng, Y. P., Boo, T. B., Kwong, H. H., Ong, C. K., Kumar, V., & Kawazoe, Y. (2007). Composition dependence of structural and electronic properties of Ga\(_{m}\)As\(_{n}\) clusters from first principles. Physical Review B - Condensed Matter and Materials Physics, 76(4), 045336/1–045336/8. Feng, Y. P., Boo, T. B., Kwong, H. H., Ong, C. K., Kumar, V., & Kawazoe, Y. (2007). Composition dependence of structural and electronic properties of Ga\(_{m}\)As\(_{n}\) clusters from first principles. Physical Review B - Condensed Matter and Materials Physics, 76(4), 045336/1–045336/8.
go back to reference Fournier, R., Sinnott, S. B., & DePristo, A. E. (1992). Density functional study of the bonding in small silicon clusters. Journal of Chemical Physics, 97(6), 4149–4161. Fournier, R., Sinnott, S. B., & DePristo, A. E. (1992). Density functional study of the bonding in small silicon clusters. Journal of Chemical Physics, 97(6), 4149–4161.
go back to reference Feynman, R. P. (1939). Forces in Molecules.Physical Reviews, 56(4), 340. Feynman, R. P. (1939). Forces in Molecules.Physical Reviews, 56(4), 340.
go back to reference Fielicke, A., Lyon, J. T., Haertelt, M., Meijer, G., Claes, P., & De Haeck, J., et al. (2009). Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization.Journal of Chemical Physics, 131(17), 171105/1–171105/6. Fielicke, A., Lyon, J. T., Haertelt, M., Meijer, G., Claes, P., & De Haeck, J., et al. (2009). Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization.Journal of Chemical Physics, 131(17), 171105/1–171105/6.
go back to reference Garcia-Fernandez, P., Bersuker, I. B., & Boggs J. E. (2006). The origin of molecular distortions: a proposed experimental test.Journal of Chemical Physics, 124(6), 044321/1–044321/7. Garcia-Fernandez, P., Bersuker, I. B., & Boggs J. E. (2006). The origin of molecular distortions: a proposed experimental test.Journal of Chemical Physics, 124(6), 044321/1–044321/7.
go back to reference Graves, R. M., & Scuseria, G. E. (1991). Ab initio theoretical study of small GaAs clusters. Journal of Chemical Physics, 95(9), 6602–6606. Graves, R. M., & Scuseria, G. E. (1991). Ab initio theoretical study of small GaAs clusters. Journal of Chemical Physics, 95(9), 6602–6606.
go back to reference Grimme, S., & Mück-Lichtenfeld, C. (2002). Structural isomers of C\(_{20}\) revisited: the cage and bowl are almost isoenergetic. ChemPhysChem, 3(2), 207–209. Grimme, S., & Mück-Lichtenfeld, C. (2002). Structural isomers of C\(_{20}\) revisited: the cage and bowl are almost isoenergetic. ChemPhysChem, 3(2), 207–209.
go back to reference Grossman, J. C., Mitas, L., & Raghavachari, K. (1995). Structure and stability of molecular carbon: importance of electron correlation. Physical Review Letters, 75(21), 3870–3873. Grossman, J. C., Mitas, L., & Raghavachari, K. (1995). Structure and stability of molecular carbon: importance of electron correlation. Physical Review Letters, 75(21), 3870–3873.
go back to reference Guillaume, M., Champagne, B., B́gú, D., & Pouchan, C. (2009). Electrostatic interaction schemes for evaluating the polarizability of silicon clusters. Journal of Chemical Physics, 130(13) Guillaume, M., Champagne, B., B́gú, D., & Pouchan, C. (2009). Electrostatic interaction schemes for evaluating the polarizability of silicon clusters. Journal of Chemical Physics, 130(13)
go back to reference Gur, I., Fromer, N. A., Geier, M. L., & Alivisatos, A. P. (2005). Materials science: air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310(5747), 462–465. Gur, I., Fromer, N. A., Geier, M. L., & Alivisatos, A. P. (2005). Materials science: air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310(5747), 462–465.
go back to reference Gurin, V. S. (1998). Ab-initio calculations of small Cd\(_{x}\)S\(_{y}\) and Zn\(_{x}\)S\(_{y}\) (x,y ≤ 6) clusters. Solid State Communications, 108(6), 389–392. Gurin, V. S. (1998). Ab-initio calculations of small Cd\(_{x}\)S\(_{y}\) and Zn\(_{x}\)S\(_{y}\) (x,y ≤ 6) clusters. Solid State Communications, 108(6), 389–392.
go back to reference Gutsev, G. L., O’Neal Jr., R. H., Saha, B. C., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2008a). Optical properties of (GaAs)n clusters (n = 2–16). Journal of Physical Chemistry A, 112(43), 10728–10735. Gutsev, G. L., O’Neal Jr., R. H., Saha, B. C., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2008a). Optical properties of (GaAs)n clusters (n = 2–16). Journal of Physical Chemistry A, 112(43), 10728–10735.
go back to reference Gutsev, G. L., Johnson, E., Mochena, M. D., & Bauschlicher Jr., C. W. (2008b). The structure and energetics of (GaAs)\(_{n}\), (GaAs)\(_{n}^{-}\), and (GaAs)\(_{n}^{+}\) (n = 2–15). Journal of Chemical Physics, 128(14), 144707/1–144707/9. Gutsev, G. L., Johnson, E., Mochena, M. D., & Bauschlicher Jr., C. W. (2008b). The structure and energetics of (GaAs)\(_{n}\), (GaAs)\(_{n}^{-}\), and (GaAs)\(_{n}^{+}\) (n = 2–15). Journal of Chemical Physics, 128(14), 144707/1–144707/9.
go back to reference Gutsev, G. L., Mochena, M. D., Saha, B. C., & Derosa P. A. (2010). Structures and properties of (GaAs)\(_{n}\) clusters. Journal of Computational and Theoretical Nanoscience, 7, 1–10. Gutsev, G. L., Mochena, M. D., Saha, B. C., & Derosa P. A. (2010). Structures and properties of (GaAs)\(_{n}\) clusters. Journal of Computational and Theoretical Nanoscience, 7, 1–10.
go back to reference Hamad, S., Richard, C., Catlow, A., Spanó, E., Matxain, J. M., & Ugalde, J. M. (2005). Structure and properties of ZnS nanoclusters. Journal of Physical Chemistry B, 109(7), 2703–2709. Hamad, S., Richard, C., Catlow, A., Spanó, E., Matxain, J. M., & Ugalde, J. M. (2005). Structure and properties of ZnS nanoclusters. Journal of Physical Chemistry B, 109(7), 2703–2709.
go back to reference Headley, A. D. (1987). Substituent effects on the basicity of dimethylamines. Journal of the American Chemical Society, 109(8), 2347–2348. Headley, A. D. (1987). Substituent effects on the basicity of dimethylamines. Journal of the American Chemical Society, 109(8), 2347–2348.
go back to reference Hellmann, H. (1937). Einführung in die Quantenchemie (p. 285). Leipzig: Franz Deuticke. Hellmann, H. (1937). Einführung in die Quantenchemie (p. 285). Leipzig: Franz Deuticke.
go back to reference Helgaker, T., Jørgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory. Chichester: Wiley. Helgaker, T., Jørgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory. Chichester: Wiley.
go back to reference Ho, K.-M., Shvartsburg, A. A., Pan, B., Lu, Z.-Y., Wang, C.-Z., Wacker, J. G., Fye J. L., & Jarrold M. F. (1998). Structures of medium-sized silicon clusters. Nature, 392, 582–585. Ho, K.-M., Shvartsburg, A. A., Pan, B., Lu, Z.-Y., Wang, C.-Z., Wacker, J. G., Fye J. L., & Jarrold M. F. (1998). Structures of medium-sized silicon clusters. Nature, 392, 582–585.
go back to reference Hohm, U. (2000). Is there a minimum polarizability principle in chemical reactions? Journal of Physical Chemistry A, 104(36), 8418–8423. Hohm, U. (2000). Is there a minimum polarizability principle in chemical reactions? Journal of Physical Chemistry A, 104(36), 8418–8423.
go back to reference Hohm, U., Loose, A., Maroulis, G., & Xenides, D. (2000). Combined experimental and theoretical treatment of the dipole polarizability of P\(_{4}\) clusters.Physical Review A - Atomic, Molecular, and Optical Physics, 61(5), 532021– 532026. Hohm, U., Loose, A., Maroulis, G., & Xenides, D. (2000). Combined experimental and theoretical treatment of the dipole polarizability of P\(_{4}\) clusters.Physical Review A - Atomic, Molecular, and Optical Physics, 61(5), 532021– 532026.
go back to reference Honea, E. C., Ogura, A., Murray, C. A., Raghavachari, K., Sprenger, W. O., Jarrold, M. F., & Brown, W. L. (1993). Raman spectra of size-selected silicon clusters and comparison with calculated structures. Nature, 366(6450), 42–44. Honea, E. C., Ogura, A., Murray, C. A., Raghavachari, K., Sprenger, W. O., Jarrold, M. F., & Brown, W. L. (1993). Raman spectra of size-selected silicon clusters and comparison with calculated structures. Nature, 366(6450), 42–44.
go back to reference Hossain, D., Hagelberg, F., Pittman Jr., C. U., & Saebo, S. (2007). Structures and stabilities of clusters of Si\(_{12}\), Si\(_{18,}\) and Si\(_{20}\) containing endohedral charged and neutral atomic species. Journal of Physical Chemistry C, 111(37), 13864–13871. Hossain, D., Hagelberg, F., Pittman Jr., C. U., & Saebo, S. (2007). Structures and stabilities of clusters of Si\(_{12}\), Si\(_{18,}\) and Si\(_{20}\) containing endohedral charged and neutral atomic species. Journal of Physical Chemistry C, 111(37), 13864–13871.
go back to reference Jackson, K. A., Yang, M., Chaudhuri, I., & Frauenheim, T. (2005). Shape, polarizability, and metallicity in silicon clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 71(3), 1–6. Jackson, K. A., Yang, M., Chaudhuri, I., & Frauenheim, T. (2005). Shape, polarizability, and metallicity in silicon clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 71(3), 1–6.
go back to reference Jackson, K., Yang, M., & Jellinek, J. (2007). Site-specific analysis of dielectric properties of finite systems. Journal of Physical Chemistry C, 111(48), 17952–17960. Jackson, K., Yang, M., & Jellinek, J. (2007). Site-specific analysis of dielectric properties of finite systems. Journal of Physical Chemistry C, 111(48), 17952–17960.
go back to reference Jackson, K., Pederson, M., Wang, C.-Z., & Ho, K.-M. (1999). Calculated polarizabilities of intermediate-size Si clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 59(5), 3685–3689. Jackson, K., Pederson, M., Wang, C.-Z., & Ho, K.-M. (1999). Calculated polarizabilities of intermediate-size Si clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 59(5), 3685–3689.
go back to reference Jackson, K. A., Horoi, M., Chaudhuri, I., Frauenheim, T., & Shvartsburg, A. A. (2004). Unraveling the shape transformation in silicon clusters. Physical Review Letters, 93(1), 013401/1–013401/4. Jackson, K. A., Horoi, M., Chaudhuri, I., Frauenheim, T., & Shvartsburg, A. A. (2004). Unraveling the shape transformation in silicon clusters. Physical Review Letters, 93(1), 013401/1–013401/4.
go back to reference Jarrold, M. F., & Bower, J. E. (1992). Mobilities of silicon cluster ions: the reactivity of silicon sausages and spheres. The Journal of Chemical Physics, 96(12), 9180–9190. Jarrold, M. F., & Bower, J. E. (1992). Mobilities of silicon cluster ions: the reactivity of silicon sausages and spheres. The Journal of Chemical Physics, 96(12), 9180–9190.
go back to reference Jarrold, M. F., & Constant, V. A. (1991). Silicon cluster ions: evidence for a structural transition. Physical Review Letters, 67(21), 2994–2997. Jarrold, M. F., & Constant, V. A. (1991). Silicon cluster ions: evidence for a structural transition. Physical Review Letters, 67(21), 2994–2997.
go back to reference Jelski, D. A., Swift, B. L., Rantala, T. T., Xia, X., & George, T. F. (1991). Structure of the Si\(_{45}\) cluster. Journal of Chemical Physics, 95(11), 8552–8560. Jelski, D. A., Swift, B. L., Rantala, T. T., Xia, X., & George, T. F. (1991). Structure of the Si\(_{45}\) cluster. Journal of Chemical Physics, 95(11), 8552–8560.
go back to reference Jha, P. C., Seal, P., Sen, S., Ågren, H., & Chakrabarti, S. (2008). Static and dynamic polarizabilities of (CdSe)\(_{n}\) (n = 1–16) clusters. Computational Materials Science, 44(2), 728–732. Jha, P. C., Seal, P., Sen, S., Ågren, H., & Chakrabarti, S. (2008). Static and dynamic polarizabilities of (CdSe)\(_{n}\) (n = 1–16) clusters. Computational Materials Science, 44(2), 728–732.
go back to reference Jose, R., Zhanpeisov, N. U., Fukumura, H., Baba, Y., & Ishikawa, I. (2006). Structure-property correlation of CdSe clusters using experimental results and first-principles DFT calculations. Journal of the American Chemical Society, 128(2), 629–636. Jose, R., Zhanpeisov, N. U., Fukumura, H., Baba, Y., & Ishikawa, I. (2006). Structure-property correlation of CdSe clusters using experimental results and first-principles DFT calculations. Journal of the American Chemical Society, 128(2), 629–636.
go back to reference Kanis, D. R., Ratner, M. A., & Marks, T. J. (1994). Design and construction of molecular assemblies with large second-order optical nonlinearities. quantum chemical aspects. Chemical Reviews, 94(1), 195–242. Kanis, D. R., Ratner, M. A., & Marks, T. J. (1994). Design and construction of molecular assemblies with large second-order optical nonlinearities. quantum chemical aspects. Chemical Reviews, 94(1), 195–242.
go back to reference Kasuya, A., Sivamohan, R., Barnakov, Y. A., Dmitruk, I. M., Nirasawa, T., & Romanyuk, V. R., et al. (2004). Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials, 3(2), 99–102. Kasuya, A., Sivamohan, R., Barnakov, Y. A., Dmitruk, I. M., Nirasawa, T., & Romanyuk, V. R., et al. (2004). Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials, 3(2), 99–102.
go back to reference Karamanis, P., Maroulis, G., & Pouchan, C. (2006a). Basis set and electron correlation effects in all-electron ab initio calculations of the static dipole polarizability of small cadmium selenide clusters, (CdSe)\(_{n}\), n = 1,2,3,4. Chemical Physics, 331(1), 19–25. Karamanis, P., Maroulis, G., & Pouchan, C. (2006a). Basis set and electron correlation effects in all-electron ab initio calculations of the static dipole polarizability of small cadmium selenide clusters, (CdSe)\(_{n}\), n = 1,2,3,4. Chemical Physics, 331(1), 19–25.
go back to reference Karamanis, P., Maroulis, G., & Pouchan, C. (2006b). Molecular geometry and polarizability of small cadmium selenide clusters from all-electron Ab initio and density functional theory calculations. Journal of Chemical Physics, 124(7), 071101/ 1–071101/2. Karamanis, P., Maroulis, G., & Pouchan, C. (2006b). Molecular geometry and polarizability of small cadmium selenide clusters from all-electron Ab initio and density functional theory calculations. Journal of Chemical Physics, 124(7), 071101/ 1–071101/2.
go back to reference Karamanis, P., Begue, D., & Pouchan, C. (2007a). Ab initio finite field (hyper)polarizability computations on stoichiometric gallium arsenide clusters Ga\(_{n}\)As\(_{n}\) (n = 2–9). Journal of Chemical Physics, 127(9), 094706/1–094706/10. Karamanis, P., Begue, D., & Pouchan, C. (2007a). Ab initio finite field (hyper)polarizability computations on stoichiometric gallium arsenide clusters Ga\(_{n}\)As\(_{n}\) (n = 2–9). Journal of Chemical Physics, 127(9), 094706/1–094706/10.
go back to reference Karamanis, P., Zhang-Negrerie, D., & Pouchan, C. (2007b). A critical analysis of the performance of conventional ab initio and DFT methods in the computation of Si\(_{6}\) ground state. Chemical Physics, 331(2–3), 417–426. Karamanis, P., Zhang-Negrerie, D., & Pouchan, C. (2007b). A critical analysis of the performance of conventional ab initio and DFT methods in the computation of Si\(_{6}\) ground state. Chemical Physics, 331(2–3), 417–426.
go back to reference Karamanis, P., Pouchan, C., & Leszczynski, J. (2008a). Electric dipole (hyper)polarizabilities of selected X\(_{2}\)Y\(_{2}\) and X\(_{3}\)Y\(_{3}\) (X = Al, Ga, in and Y = P, As): III-V semiconductor clusters. An ab initio comparative study. Journal of Physical Chemistry A, 112(51), 13662–13671. Karamanis, P., Pouchan, C., & Leszczynski, J. (2008a). Electric dipole (hyper)polarizabilities of selected X\(_{2}\)Y\(_{2}\) and X\(_{3}\)Y\(_{3}\) (X = Al, Ga, in and Y = P, As): III-V semiconductor clusters. An ab initio comparative study. Journal of Physical Chemistry A, 112(51), 13662–13671.
go back to reference Karamanis, P., Xenides, D., & Leszczynski, J. (2008b). Polarizability evolution on natural and artificial low dimensional binary semiconductor systems: a case study of stoichiometric aluminum phosphide semiconductor clusters. Journal of Chemical Physics, 129(9), 094708/1–094708/12. Karamanis, P., Xenides, D., & Leszczynski, J. (2008b). Polarizability evolution on natural and artificial low dimensional binary semiconductor systems: a case study of stoichiometric aluminum phosphide semiconductor clusters. Journal of Chemical Physics, 129(9), 094708/1–094708/12.
go back to reference Karamanis, P., Xenides, D., & Leszcszynski, J. (2008c). The polarizabilities of small stoichiometric aluminum phosphide clusters Al\(_{n}\)P\(_{n}\) (n = 2–9). Ab initio and density functional investigation. Chemical Physics Letters, 457(1–3), 137–142. Karamanis, P., Xenides, D., & Leszcszynski, J. (2008c). The polarizabilities of small stoichiometric aluminum phosphide clusters Al\(_{n}\)P\(_{n}\) (n = 2–9). Ab initio and density functional investigation. Chemical Physics Letters, 457(1–3), 137–142.
go back to reference Karamanis, P., & Leszczynski, J. (2008d). Correlations between bonding, size, and second hyperpolarizability (\(\gamma )\) of small semiconductor clusters: ab initio study on Al\(_{n}\)P\(_{n}\) clusters with n = 2, 3, 4, 6, and 9. Journal of Chemical Physics, 128(15), 154323/1–154323/10. Karamanis, P., & Leszczynski, J. (2008d). Correlations between bonding, size, and second hyperpolarizability (\(\gamma )\) of small semiconductor clusters: ab initio study on Al\(_{n}\)P\(_{n}\) clusters with n = 2, 3, 4, 6, and 9. Journal of Chemical Physics, 128(15), 154323/1–154323/10.
go back to reference Karamanis, P., Pouchan, C., & Maroulis, G. (2008). Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Physical Review A - Atomic, Molecular, and Optical Physics, 77(1), 013201/1–013201/6. Karamanis, P., Pouchan, C., & Maroulis, G. (2008). Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Physical Review A - Atomic, Molecular, and Optical Physics, 77(1), 013201/1–013201/6.
go back to reference Karamanis, P., Carbonnière, P., & Pouchan, C. (2009). Structures and composition-dependent polarizabilities of open- and closed-shell gan asm semiconductor clusters.Physical Review A - Atomic, Molecular, and Optical Physics, 80(5), 053201/1–053201/11. Karamanis, P., Carbonnière, P., & Pouchan, C. (2009). Structures and composition-dependent polarizabilities of open- and closed-shell gan asm semiconductor clusters.Physical Review A - Atomic, Molecular, and Optical Physics, 80(5), 053201/1–053201/11.
go back to reference Karamanis, P., & Pouchan, C. (2009). How large are the microscopic electronic dipole (hyper)polarizabilities of Cd\(_{n}\)Te\(_{n}\) bare clusters compared to those of Cd\(_{n}\)S\(_{n}\) and Cd\(_{n}\)Se\(_{n}\)? A systematic ab initio study. Chemical Physics Letters, 474(1–3), 162–167. Karamanis, P., & Pouchan, C. (2009). How large are the microscopic electronic dipole (hyper)polarizabilities of Cd\(_{n}\)Te\(_{n}\) bare clusters compared to those of Cd\(_{n}\)S\(_{n}\) and Cd\(_{n}\)Se\(_{n}\)? A systematic ab initio study. Chemical Physics Letters, 474(1–3), 162–167.
go back to reference Karamanis, P., Marchal, R., Carbonnière, P., & Pouchan, C. (2010). Doping effects on the electric response properties of Silicon clusters. A global structure-property investigation of AlSi\(_{n-1}\) clusters (n = 3–10). Chemical Physics Letters, 474(1–3), 59–64. Karamanis, P., Marchal, R., Carbonnière, P., & Pouchan, C. (2010). Doping effects on the electric response properties of Silicon clusters. A global structure-property investigation of AlSi\(_{n-1}\) clusters (n = 3–10). Chemical Physics Letters, 474(1–3), 59–64.
go back to reference Karamanis, P., Pouchan, C., Weatherford, C. A., & Gutsev, G. L. (2011). Evolution of properties in prolate (GaAs)\(_{n}\) clusters.Journal of Physical Chemistry C, 115(1), 97–107. Karamanis, P., Pouchan, C., Weatherford, C. A., & Gutsev, G. L. (2011). Evolution of properties in prolate (GaAs)\(_{n}\) clusters.Journal of Physical Chemistry C, 115(1), 97–107.
go back to reference Karamanis, P., & Pouchan, C. (2011). On the shape dependence of cluster (hyper)polarizabilities. A combined ab initio and DFT study on large fullerene-like gallium arsenide semiconductor clusters.International Journal of Quantum Chemistry, 111(4), 788–796. Karamanis, P., & Pouchan, C. (2011). On the shape dependence of cluster (hyper)polarizabilities. A combined ab initio and DFT study on large fullerene-like gallium arsenide semiconductor clusters.International Journal of Quantum Chemistry, 111(4), 788–796.
go back to reference Kaxiras, E., & Jackson, K. (1993). Shape of small silicon clusters. Physical Review Letters, 71(5), 727–730. Kaxiras, E., & Jackson, K. (1993). Shape of small silicon clusters. Physical Review Letters, 71(5), 727–730.
go back to reference Kim, H.-Y., Sofo, J. O., Velegol, D., Cole, M. W., & Mukhopadhyay, G. (2005). Static polarizabilities of dielectric nanoclusters.Physical Review A - Atomic, Molecular, and Optical Physics, 72(5), 1–8. Kim, H.-Y., Sofo, J. O., Velegol, D., Cole, M. W., & Mukhopadhyay, G. (2005). Static polarizabilities of dielectric nanoclusters.Physical Review A - Atomic, Molecular, and Optical Physics, 72(5), 1–8.
go back to reference Koch, W., & Holthausen, M. C. (2000). A Chemist’s guide to density functional theory. Chichester: Wiley. Koch, W., & Holthausen, M. C. (2000). A Chemist’s guide to density functional theory. Chichester: Wiley.
go back to reference Korambath, P. P., & Karna, S. P. (2000). (Hyper)polarizabilities of GaN, GaP, and GaAs clusters: an ab initio time-dependent Hartree-Fock study. Journal of Physical Chemistry A, 104(20), 4801–4804. Korambath, P. P., & Karna, S. P. (2000). (Hyper)polarizabilities of GaN, GaP, and GaAs clusters: an ab initio time-dependent Hartree-Fock study. Journal of Physical Chemistry A, 104(20), 4801–4804.
go back to reference Krishtal, A., Senet, P., Van Alsenoy, C. (2010) Origin of the size-dependence of the polarizability per atom in heterogeneous clusters: the case of AlP clusters. Journal of Chemical Physics, 133(15), 154310/1–154310/11. Krishtal, A., Senet, P., Van Alsenoy, C. (2010) Origin of the size-dependence of the polarizability per atom in heterogeneous clusters: the case of AlP clusters. Journal of Chemical Physics, 133(15), 154310/1–154310/11.
go back to reference Kurtz, H. A., Stewart, J. J. P., & Dieter, K. M. (1990). Calculation of the nonlinear optical properties of molecules.Journal of Computational Chemistry, 11(1), 82–87. Kurtz, H. A., Stewart, J. J. P., & Dieter, K. M. (1990). Calculation of the nonlinear optical properties of molecules.Journal of Computational Chemistry, 11(1), 82–87.
go back to reference Lan, Y.-Z., Cheng, W.-D., Wu, D.-S., Shen, J., Huang, S.-P., Zhang, H., Gong, Y.-J., & Li, F.-F. (2006). A theoretical investigation of hyperpolarizability for small Ga\(_{n}\)As\(_{m}\) (n + m = 4–10) clusters. Journal of Chemical Physics, 124(9), 094302/ 1–094302/8. Lan, Y.-Z., Cheng, W.-D., Wu, D.-S., Shen, J., Huang, S.-P., Zhang, H., Gong, Y.-J., & Li, F.-F. (2006). A theoretical investigation of hyperpolarizability for small Ga\(_{n}\)As\(_{m}\) (n + m = 4–10) clusters. Journal of Chemical Physics, 124(9), 094302/ 1–094302/8.
go back to reference Lan, Y., Cheng, W., Wu, D., Li, X., Zhang, H., & Gong, Y. (2003). TDHF-SOS treatments on linear and nonlinear optical properties of III-V semiconductor clusters (Ga\(_{3}\)As\(_{3}\), Ga\(_{3}\)Sb\(_{3}\), In\(_{3}\)P\(_{3}\), In\(_{3}\)As\(_{3}\), In\(_{3}\)Sb\(_{3})\).Chemical Physics Letters, 372 (5–6), 645–649. Lan, Y., Cheng, W., Wu, D., Li, X., Zhang, H., & Gong, Y. (2003). TDHF-SOS treatments on linear and nonlinear optical properties of III-V semiconductor clusters (Ga\(_{3}\)As\(_{3}\), Ga\(_{3}\)Sb\(_{3}\), In\(_{3}\)P\(_{3}\), In\(_{3}\)As\(_{3}\), In\(_{3}\)Sb\(_{3})\).Chemical Physics Letters, 372 (5–6), 645–649.
go back to reference Lan, Y.-Z., Feng, Y.-L., Wen, Y.-H., & Teng, B.-T. (2008). Dynamic second-order hyperpolarizabilities of Si\(_{3}\) and Si\(_{4}\) clusters using coupled cluster cubic response theory.Chemical Physics Letters, 461(1–3), 118–121. Lan, Y.-Z., Feng, Y.-L., Wen, Y.-H., & Teng, B.-T. (2008). Dynamic second-order hyperpolarizabilities of Si\(_{3}\) and Si\(_{4}\) clusters using coupled cluster cubic response theory.Chemical Physics Letters, 461(1–3), 118–121.
go back to reference Lan, Y.-Z., & Feng, Y.-L. (2009). Study of absorption spectra and (hyper)polarizabilities of SiC\(_{n}\) and Si\(_{n}\)C (n = 2–6) clusters using density functional response approach.Journal of Chemical Physics, 131(5), 054509/1–054509/11. Lan, Y.-Z., & Feng, Y.-L. (2009). Study of absorption spectra and (hyper)polarizabilities of SiC\(_{n}\) and Si\(_{n}\)C (n = 2–6) clusters using density functional response approach.Journal of Chemical Physics, 131(5), 054509/1–054509/11.
go back to reference Leitsmann, R., Schmidt, W. G., Hahn, P. H., & Bechstedt, F. (2005). Second-harmonic polarizability including electron-hole attraction from band-structure theory. Physical Review B - Condensed Matter and Materials Physics, 71(19), 195209/1–195209/10. Leitsmann, R., Schmidt, W. G., Hahn, P. H., & Bechstedt, F. (2005). Second-harmonic polarizability including electron-hole attraction from band-structure theory. Physical Review B - Condensed Matter and Materials Physics, 71(19), 195209/1–195209/10.
go back to reference Li, B.-X. (2005). Stability of medium-sized neutral and charged silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 71(23), 1–7. Li, B.-X. (2005). Stability of medium-sized neutral and charged silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 71(23), 1–7.
go back to reference Li, L., Zhou, Z., Wang, X., Huang, W., He, Y., & Yang, M. (2008) First-principles study of static polarizability, first and second hyperpolarizabilities of small-sized ZnO clusters. Physical Chemistry Chemical Physics, 10(45), 6829–6835. Li, L., Zhou, Z., Wang, X., Huang, W., He, Y., & Yang, M. (2008) First-principles study of static polarizability, first and second hyperpolarizabilities of small-sized ZnO clusters. Physical Chemistry Chemical Physics, 10(45), 6829–6835.
go back to reference Li, B.-X., Cao, P.-L., & Zhou, X.-Y. (2003). Electronic and geometric structures of Si\(_{n}\)- and Si\(_{n}^{+}\) (n = 2–10) clusters and in comparison with Si\(_{n}\). Physica Status Solidi (B) Basic Research, 238(1), 11–19. Li, B.-X., Cao, P.-L., & Zhou, X.-Y. (2003). Electronic and geometric structures of Si\(_{n}\)- and Si\(_{n}^{+}\) (n = 2–10) clusters and in comparison with Si\(_{n}\). Physica Status Solidi (B) Basic Research, 238(1), 11–19.
go back to reference Liao, D. W., & Balasubramanian, K. (1992). Electronic structure of the III-V tetramer clusters and their positive ions.Journal of Chemical Physics, 96(12), 8938–8947. Liao, D. W., & Balasubramanian, K. (1992). Electronic structure of the III-V tetramer clusters and their positive ions.Journal of Chemical Physics, 96(12), 8938–8947.
go back to reference Lipscomb, W. N. (1966). Framework rearrangement in boranes and carboranes.Science, 153(3734), 373–378. Lipscomb, W. N. (1966). Framework rearrangement in boranes and carboranes.Science, 153(3734), 373–378.
go back to reference Lou, L., Nordlander, P., & Smalley, R. E. (1992). Electronic structure of small GaAs clusters. II. Journal of Chemical Physics, 97(3), 1858–1864. Lou, L., Nordlander, P., & Smalley, R. E. (1992). Electronic structure of small GaAs clusters. II. Journal of Chemical Physics, 97(3), 1858–1864.
go back to reference Luis, J. M., Duran, M., Champagne, B., & Kirtman, B. (2000). Determination of vibrational polarizabilities and hyperpolarizabilities using field-induced coordinates.Journal of Chemical Physics, 113 (13), 5203–5213. Luis, J. M., Duran, M., Champagne, B., & Kirtman, B. (2000). Determination of vibrational polarizabilities and hyperpolarizabilities using field-induced coordinates.Journal of Chemical Physics, 113 (13), 5203–5213.
go back to reference Lyon, J. T., Gruene, P., Fielicke, A., Meijer, G., Janssens, E., & Claes, P., et al. (2009). Structures of silicon cluster cations in the gas phase. Journal of the American Chemical Society, 131(3), 1115–1121. Lyon, J. T., Gruene, P., Fielicke, A., Meijer, G., Janssens, E., & Claes, P., et al. (2009). Structures of silicon cluster cations in the gas phase. Journal of the American Chemical Society, 131(3), 1115–1121.
go back to reference Marchal, R., Carbonnière, P., & Pouchan, C. (2009). A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from density functional theory-based potential energy surfaces: the example of Si\(_{n}\) (n = 3, 15) as a test case. Journal of Chemical Physics, 131(11), 114105/1–114105/9. Marchal, R., Carbonnière, P., & Pouchan, C. (2009). A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from density functional theory-based potential energy surfaces: the example of Si\(_{n}\) (n = 3, 15) as a test case. Journal of Chemical Physics, 131(11), 114105/1–114105/9.
go back to reference Marchal, R., Carbonnière, P., & Pouchan, C. (2010). A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from DFT-based potential energy surface. A theoretical study of Sin and Si\(_{n-1}\)Al clusters. International Journal of Quantum Chemistry, 110(12), 2256–2259. Marchal, R., Carbonnière, P., & Pouchan, C. (2010). A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from DFT-based potential energy surface. A theoretical study of Sin and Si\(_{n-1}\)Al clusters. International Journal of Quantum Chemistry, 110(12), 2256–2259.
go back to reference Marchal, R., Carbonnière, P., & Pouchan, C. (2011). On the Structures of Non-Stoichiometric GanAsm Clusters (5 n < + m < 8). Journal of Computational and Theoretical Nanosciences, 8(4), 568–578. Marchal, R., Carbonnière, P., & Pouchan, C. (2011). On the Structures of Non-Stoichiometric GanAsm Clusters (5 n < + m < 8). Journal of Computational and Theoretical Nanosciences, 8(4), 568–578.
go back to reference Maroulis, G., Karamanis, P., & Pouchan, C. (2007). Hyperpolarizability of GaAs dimer is not negative. Journal of Chemical Physics, 126(15), 154316/1–154316/5. Maroulis, G., Karamanis, P., & Pouchan, C. (2007). Hyperpolarizability of GaAs dimer is not negative. Journal of Chemical Physics, 126(15), 154316/1–154316/5.
go back to reference Maroulis, G. (2008). How large is the static electric (hyper)polarizability anisotropy in HXeI? Journal of Chemical Physics, 129(4), 044314/ 1–044314/6. Maroulis, G. (2008). How large is the static electric (hyper)polarizability anisotropy in HXeI? Journal of Chemical Physics, 129(4), 044314/ 1–044314/6.
go back to reference Maroulis, G. (2004). Bonding and (hyper) polarizability in the sodium dimer. Journal of Chemical Physics, 121(21), 10519–10524. Maroulis, G. (2004). Bonding and (hyper) polarizability in the sodium dimer. Journal of Chemical Physics, 121(21), 10519–10524.
go back to reference Maroulis, G., Begué, D., & Pouchan, C. (2003). Accurate dipole polarizabilities of small silicon clusters from ab initio and density functional theory calculations. Journal of Chemical Physics, 119(2), 794–797. Maroulis, G., Begué, D., & Pouchan, C. (2003). Accurate dipole polarizabilities of small silicon clusters from ab initio and density functional theory calculations. Journal of Chemical Physics, 119(2), 794–797.
go back to reference Maroulis, G. (2003). Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. Journal of Chemical Physics, 118(6), 2673–2687. Maroulis, G. (2003). Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. Journal of Chemical Physics, 118(6), 2673–2687.
go back to reference Maroulis, G., & Pouchan, C. (2003). Size and electric dipole (hyper)polarizability in small cadmium sulfide clusters: an ab initio study on (CdS)\(_{n}\), n = 1, 2, and 4.Journal of Physical Chemistry B, 107(39), 10683–10686. Maroulis, G., & Pouchan, C. (2003). Size and electric dipole (hyper)polarizability in small cadmium sulfide clusters: an ab initio study on (CdS)\(_{n}\), n = 1, 2, and 4.Journal of Physical Chemistry B, 107(39), 10683–10686.
go back to reference Marks, T. J., & Ratner, M. A. (1995). Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angewandte Chemie(International Edition in English), 34(2), 155–173. Marks, T. J., & Ratner, M. A. (1995). Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angewandte Chemie(International Edition in English), 34(2), 155–173.
go back to reference Matxain, J. M., Fowler, J. E., & Ugalde, J. M. (2000). Small clusters of II-VI materials: Zn\(_{i}\)O\(_{i}\), i = 1–9. Physical Review A - Atomic, Molecular, and Optical Physics, 62(5), 053201/1–053201/10. Matxain, J. M., Fowler, J. E., & Ugalde, J. M. (2000). Small clusters of II-VI materials: Zn\(_{i}\)O\(_{i}\), i = 1–9. Physical Review A - Atomic, Molecular, and Optical Physics, 62(5), 053201/1–053201/10.
go back to reference Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2001). Small clusters of group-(II-VI) materials: Zn\(_{i}\)X\(_{i}\), X = Se,Te, i = 1–9. Physical Review A. Atomic, Molecular, and Optical Physics, 64(5), 532011–532018. Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2001). Small clusters of group-(II-VI) materials: Zn\(_{i}\)X\(_{i}\), X = Se,Te, i = 1–9. Physical Review A. Atomic, Molecular, and Optical Physics, 64(5), 532011–532018.
go back to reference Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2003). Clusters of group II–VI materials: Cd\(_{i}\)O\(_{i}\) (i ≤ 15). Journal of Physical Chemistry A, 107(46), 9918–9923. Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2003). Clusters of group II–VI materials: Cd\(_{i}\)O\(_{i}\) (i ≤ 15). Journal of Physical Chemistry A, 107(46), 9918–9923.
go back to reference Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2004). Clusters of II–VI materials: Cd\(_{i}\)X\(_{i}\), X = S, Se, Te, i ≤ 16. Journal of Physical Chemistry A, 108(47), 10502–10508. Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2004). Clusters of II–VI materials: Cd\(_{i}\)X\(_{i}\), X = S, Se, Te, i ≤ 16. Journal of Physical Chemistry A, 108(47), 10502–10508.
go back to reference McLean, A. D., & Yoshimine, M. (1967). Theory of molecular polarizabilities.Journal of Chemical Physics, 47(6), 1927–1935. McLean, A. D., & Yoshimine, M. (1967). Theory of molecular polarizabilities.Journal of Chemical Physics, 47(6), 1927–1935.
go back to reference Menon, M., & Subbaswamy, K. R. (1995). Structure and stability of Si45 clusters: a generalized tight-binding molecular-dynamics approach. Physical Review B, 51(24), 17952–17956. Menon, M., & Subbaswamy, K. R. (1995). Structure and stability of Si45 clusters: a generalized tight-binding molecular-dynamics approach. Physical Review B, 51(24), 17952–17956.
go back to reference Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., & Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., & Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544.
go back to reference Mitas, L., Grossman, J. C., Stich, I., & Tobik, J. (2000). Silicon clusters of intermediate size: energetics, dynamics, and thermal effects. Physical Review Letters, 84(7), 1479–1482. Mitas, L., Grossman, J. C., Stich, I., & Tobik, J. (2000). Silicon clusters of intermediate size: energetics, dynamics, and thermal effects. Physical Review Letters, 84(7), 1479–1482.
go back to reference Murray, C. B., Kagan, C. R., & Bawendi, M. G. (2000). Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 30, 545–610. Murray, C. B., Kagan, C. R., & Bawendi, M. G. (2000). Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 30, 545–610.
go back to reference Nagle, J. K. (1990). Atomic polarizability and electronegativity. Journal of the American Chemical Society, 112(12), 4741–4747. Nagle, J. K. (1990). Atomic polarizability and electronegativity. Journal of the American Chemical Society, 112(12), 4741–4747.
go back to reference Nair, N. N., Bredow, T., & Jug, K. (2004). Molecular dynamics implementation in MSINDO: study of silicon clusters. Journal of Computational Chemistry, 25(10), 1255–1263. Nair, N. N., Bredow, T., & Jug, K. (2004). Molecular dynamics implementation in MSINDO: study of silicon clusters. Journal of Computational Chemistry, 25(10), 1255–1263.
go back to reference Nigam, S., Majumder, C., & Kulshreshtha, S. K. (2004). Structural and electronic properties of Si\(_{n}\), Si\(_{n}^{+}\), and AlSi\(_{n}^{-1}\) (n = 2–13) clusters: theoretical investigation based on ab initio molecular orbital theory. Journal of Chemical Physics, 121(16), 7756–7763. Nigam, S., Majumder, C., & Kulshreshtha, S. K. (2004). Structural and electronic properties of Si\(_{n}\), Si\(_{n}^{+}\), and AlSi\(_{n}^{-1}\) (n = 2–13) clusters: theoretical investigation based on ab initio molecular orbital theory. Journal of Chemical Physics, 121(16), 7756–7763.
go back to reference O’Brien, S. C., Liu, Y., Zhang, Q., Heath, J. R., Tittel, F. K., & Curl, R. F., et al. (1985). Supersonic cluster beams of III-V semiconductors: Ga\(_{x}\)As\(_{y}\). Journal of Chemical Physics, 84(7), 4074–4079. O’Brien, S. C., Liu, Y., Zhang, Q., Heath, J. R., Tittel, F. K., & Curl, R. F., et al. (1985). Supersonic cluster beams of III-V semiconductors: Ga\(_{x}\)As\(_{y}\). Journal of Chemical Physics, 84(7), 4074–4079.
go back to reference Papadopoulos, M. G., Reis, H., Avramopoulos, A., Erkoç, S., & Amirouche, L. (2005). A comparative study of the dipole polarizability of some Zn clusters.Journal of Physical Chemistry B, 109(40), 18822–18830. Papadopoulos, M. G., Reis, H., Avramopoulos, A., Erkoç, S., & Amirouche, L. (2005). A comparative study of the dipole polarizability of some Zn clusters.Journal of Physical Chemistry B, 109(40), 18822–18830.
go back to reference Papadopoulos, M. G., Reis, H., Avramopoulos, A., Erkoç, S., & Amirouche, L. (2006). Polarizabilities and second hyperpolarizabilities of Zn\(_{m}\)Cd\(_{n}\) clusters.Molecular Physics, 104(13–14), 2027–2036. Papadopoulos, M. G., Reis, H., Avramopoulos, A., Erkoç, S., & Amirouche, L. (2006). Polarizabilities and second hyperpolarizabilities of Zn\(_{m}\)Cd\(_{n}\) clusters.Molecular Physics, 104(13–14), 2027–2036.
go back to reference Parr, R. G., & Chattaraj, P. K. (1991). Principle of maximum hardness. Journal of the American Chemical Society, 113(5), 1854–1855. Parr, R. G., & Chattaraj, P. K. (1991). Principle of maximum hardness. Journal of the American Chemical Society, 113(5), 1854–1855.
go back to reference Pedroza, L. S., & Da Silva, A. J. R. (2007). Ab initio monte carlo simulations applied to Si\(_{5}\) cluster. Physical Review B - Condensed Matter and Materials Physics, 75(24), 245331/1–245331/10. Pedroza, L. S., & Da Silva, A. J. R. (2007). Ab initio monte carlo simulations applied to Si\(_{5}\) cluster. Physical Review B - Condensed Matter and Materials Physics, 75(24), 245331/1–245331/10.
go back to reference Peng, X., Wickham, J., & Alivisatos, A. P. (1998). Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: ‘Focusing’ of size distributions. Journal of the American Chemical Society, 120(21), 5343–5344. Peng, X., Wickham, J., & Alivisatos, A. P. (1998). Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: ‘Focusing’ of size distributions. Journal of the American Chemical Society, 120(21), 5343–5344.
go back to reference Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., et al. (2000). Shape control of CdSe nanocrystals. Nature, 404(6773), 59–61. Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., et al. (2000). Shape control of CdSe nanocrystals. Nature, 404(6773), 59–61.
go back to reference Pool, R. (1990). Clusters: strange morsels of matter. Science, 248(4960), 1186–1188. Pool, R. (1990). Clusters: strange morsels of matter. Science, 248(4960), 1186–1188.
go back to reference Pouchan, C., Bégué, D., & Zhang, D. Y. (2004). Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Si\(_{n}\)(n = 3–10).Journal of Chemical Physics, 121(10), 4628–4634. Pouchan, C., Bégué, D., & Zhang, D. Y. (2004). Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Si\(_{n}\)(n = 3–10).Journal of Chemical Physics, 121(10), 4628–4634.
go back to reference Powell, G. D., Wang, J.-F., & Aspnes, D. E. (2002). Simplified bond-hyperpolarizability model of second harmonic generation. Physical Review B - Condensed Matter and Materials Physics, 65(20), 205320/1–205320/8. Powell, G. D., Wang, J.-F., & Aspnes, D. E. (2002). Simplified bond-hyperpolarizability model of second harmonic generation. Physical Review B - Condensed Matter and Materials Physics, 65(20), 205320/1–205320/8.
go back to reference Prinzbach, H., Weller, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L. T., et al. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C\(_{20}\). Nature, 407(6800), 60–63. Prinzbach, H., Weller, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L. T., et al. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C\(_{20}\). Nature, 407(6800), 60–63.
go back to reference Pushpa, R., Narasimhan, S., & Waghmare, U. (2004). Symmetries, vibrational instabilities, and routes to stable structures of clusters of Al, Sn, and As. Journal of Chemical Physics, 121(11), 5211–5220. Pushpa, R., Narasimhan, S., & Waghmare, U. (2004). Symmetries, vibrational instabilities, and routes to stable structures of clusters of Al, Sn, and As. Journal of Chemical Physics, 121(11), 5211–5220.
go back to reference Raghavachari, K., & Logovinsky, V. (1985). Structure and bonding in small silicon clusters. Physical Review Letters, 55(26), 2853–2856. Raghavachari, K., & Logovinsky, V. (1985). Structure and bonding in small silicon clusters. Physical Review Letters, 55(26), 2853–2856.
go back to reference Raghavachari, K., & Rohlfing, C. M. (1988). Bonding and stabilities of small silicon clusters: a theoretical study of Si\(_{7}\)–Si\(_{10}\). Journal of Chemical Physics, 89(4), 2219–2234. Raghavachari, K., & Rohlfing, C. M. (1988). Bonding and stabilities of small silicon clusters: a theoretical study of Si\(_{7}\)–Si\(_{10}\). Journal of Chemical Physics, 89(4), 2219–2234.
go back to reference Raptis, S. G., Papadopoulos, M. G., & Sadlej, A. J. (1999). The correlation, relativistic, and vibrational contributions to the dipole moments, polarizabilities, and first and second hyperpolarizabilities of ZnS, CdS, and HgS.Journal of Chemical Physics, 111(17), 7904–7915. Raptis, S. G., Papadopoulos, M. G., & Sadlej, A. J. (1999). The correlation, relativistic, and vibrational contributions to the dipole moments, polarizabilities, and first and second hyperpolarizabilities of ZnS, CdS, and HgS.Journal of Chemical Physics, 111(17), 7904–7915.
go back to reference Reis, H., Papadopoulos, M. G., & Boustani, I. (2000). DFT calculations of static dipole polarizabilities and hyperpolarizabilities for the boron clusters bn (n = 3–8, 10).International Journal of Quantum Chemistry, 78(2), 131–135. Reis, H., Papadopoulos, M. G., & Boustani, I. (2000). DFT calculations of static dipole polarizabilities and hyperpolarizabilities for the boron clusters bn (n = 3–8, 10).International Journal of Quantum Chemistry, 78(2), 131–135.
go back to reference Rohlfing, C. M., & Raghavachari, K. A (1990). Theoretical study of small silicon clusters using an effective core potential. Chemical Physics Letters, 167(6), 559–565. Rohlfing, C. M., & Raghavachari, K. A (1990). Theoretical study of small silicon clusters using an effective core potential. Chemical Physics Letters, 167(6), 559–565.
go back to reference Roman, E., Yates, J. R., Veithen, M., Vanderbilt, D., & Souza, I. (2006). Ab initio study of the nonlinear optics of III-V semiconductors in the terahertz regime. Physical Review B - Condensed Matter and Materials Physics, 74(24), 245204/ 1–245204/9. Roman, E., Yates, J. R., Veithen, M., Vanderbilt, D., & Souza, I. (2006). Ab initio study of the nonlinear optics of III-V semiconductors in the terahertz regime. Physical Review B - Condensed Matter and Materials Physics, 74(24), 245204/ 1–245204/9.
go back to reference Sanville, E., Burnin, A., & BelBruno, J. J. (2006). Experimental and computational study of small (n = 1–16) stoichiometric zinc and cadmium chalcogenide clusters. Journal of Physical Chemistry A, 110(7), 2378–2386. Sanville, E., Burnin, A., & BelBruno, J. J. (2006). Experimental and computational study of small (n = 1–16) stoichiometric zinc and cadmium chalcogenide clusters. Journal of Physical Chemistry A, 110(7), 2378–2386.
go back to reference Schäfer, R., Schlecht, S., Woenckhaus, J., & Becker, J. A. (1996). Polarizabilities of isolated semiconductor clusters.Physical Review Letters, 76(3), 471–474. Schäfer, R., Schlecht, S., Woenckhaus, J., & Becker, J. A. (1996). Polarizabilities of isolated semiconductor clusters.Physical Review Letters, 76(3), 471–474.
go back to reference Schaller, R. D., & Klimov, V. I. (2006). Non-poissonian exciton populations in semiconductor nanocrystals via carrier multiplication. Physical Review Letters, 96(9), 1–4. Schaller, R. D., & Klimov, V. I. (2006). Non-poissonian exciton populations in semiconductor nanocrystals via carrier multiplication. Physical Review Letters, 96(9), 1–4.
go back to reference Schlecht, S., Schäfer, R., Woenckhaus, J., & Becker, J. A. (1995). Electric dipole polarizabilities of isolated gallium arsenide clusters.Chemical Physics Letters, 246(3), 315–320. Schlecht, S., Schäfer, R., Woenckhaus, J., & Becker, J. A. (1995). Electric dipole polarizabilities of isolated gallium arsenide clusters.Chemical Physics Letters, 246(3), 315–320.
go back to reference Schnell, M., Herwig, C., & Becker, J. A. (2003). Analysis of semiconductor cluster beam polarization taking small permanent dipole moments into account.Zeitschrift Fur Physikalische Chemie, 217(8), 1003–1030. Schnell, M., Herwig, C., & Becker, J. A. (2003). Analysis of semiconductor cluster beam polarization taking small permanent dipole moments into account.Zeitschrift Fur Physikalische Chemie, 217(8), 1003–1030.
go back to reference Sen, S., & Chakrabarti, S. (2006). Frequency-dependent nonlinear optical properties of CdSe clusters. Physical Review B - Condensed Matter and Materials Physics, 74(20), 205435/ 1–205435/7. Sen, S., & Chakrabarti, S. (2006). Frequency-dependent nonlinear optical properties of CdSe clusters. Physical Review B - Condensed Matter and Materials Physics, 74(20), 205435/ 1–205435/7.
go back to reference Sokolova, S., Lüchow, A., & Anderson, J. B. (2000). Energetics of carbon clusters C\(_{20}\) from all-electron quantum monte carlo calculations. Chemical Physics Letters, 323(3–4), 229–233. Sokolova, S., Lüchow, A., & Anderson, J. B. (2000). Energetics of carbon clusters C\(_{20}\) from all-electron quantum monte carlo calculations. Chemical Physics Letters, 323(3–4), 229–233.
go back to reference Song, K. M., Ray, A. K., & Khowash, P. K. (1994). On the electronic structures of GaAs clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 27(8), 1637–1648. Song, K. M., Ray, A. K., & Khowash, P. K. (1994). On the electronic structures of GaAs clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 27(8), 1637–1648.
go back to reference Sun, Q., Wang, Q., Jena, P., Waterman, S., & Kawazoe, Y. (2003). First-principles studies of the geometry and energetics of the Si\(_{36}\) cluster. Physical Review A - Atomic, Molecular, and Optical Physics, 67(6), 632011– 632016. Sun, Q., Wang, Q., Jena, P., Waterman, S., & Kawazoe, Y. (2003). First-principles studies of the geometry and energetics of the Si\(_{36}\) cluster. Physical Review A - Atomic, Molecular, and Optical Physics, 67(6), 632011– 632016.
go back to reference Swaminathan, P., Antonov, V. N., Soares, J. A. N. T., Palmer, J. S., & Weaver, J. H. (2006). Cd-based II-VI semiconductor nanostructures produced by buffer-layer-assisted growth: structural evolution and photoluminescence. Physical Review B - Condensed Matter and Materials Physics, 73(12), 1–8. Swaminathan, P., Antonov, V. N., Soares, J. A. N. T., Palmer, J. S., & Weaver, J. H. (2006). Cd-based II-VI semiconductor nanostructures produced by buffer-layer-assisted growth: structural evolution and photoluminescence. Physical Review B - Condensed Matter and Materials Physics, 73(12), 1–8.
go back to reference Szabo, A., & Ostlund, N. S. (1989). Modern quantum chemistry. New York: MacMillan. Szabo, A., & Ostlund, N. S. (1989). Modern quantum chemistry. New York: MacMillan.
go back to reference Tekin, A., & Hartke, B. (2004). Global geometry optimization of small silicon clusters with empirical potentials and at the DFT level. Physical Chemistry Chemical Physics, 6(3), 503–509. Tekin, A., & Hartke, B. (2004). Global geometry optimization of small silicon clusters with empirical potentials and at the DFT level. Physical Chemistry Chemical Physics, 6(3), 503–509.
go back to reference Torrens, F. (2002). Fractal dimension of different structural-type zeolites and of the active sites. Physica E (Amsterdam), 13, 67. Torrens, F. (2002). Fractal dimension of different structural-type zeolites and of the active sites. Physica E (Amsterdam), 13, 67.
go back to reference Troparevsky, M. C., & Chelikowsky, J. R. (2001). Structural and electronic properties of CdS and CdSe clusters. Journal of Chemical Physics, 114(2), 943–949. Troparevsky, M. C., & Chelikowsky, J. R. (2001). Structural and electronic properties of CdS and CdSe clusters. Journal of Chemical Physics, 114(2), 943–949.
go back to reference Troparevsky, M. C., Kronik, L., & Chelikowsky, J. R. (2002). Ab initio absorption spectra of CdSe clusters.Physical Review B - Condensed Matter and Materials Physics, 65(3), 333111–333114. Troparevsky, M. C., Kronik, L., & Chelikowsky, J. R. (2002). Ab initio absorption spectra of CdSe clusters.Physical Review B - Condensed Matter and Materials Physics, 65(3), 333111–333114.
go back to reference Vasiliev, I., Ögüt, S., & Chelikowsky, J. R. (1997). Ab initio calculations for the polarizabilities of small semiconductor clusters.Physical Review Letters, 78(25), 4805–4808. Vasiliev, I., Ögüt, S., & Chelikowsky, J. R. (1997). Ab initio calculations for the polarizabilities of small semiconductor clusters.Physical Review Letters, 78(25), 4805–4808.
go back to reference Vela, A., & Gázquez, J. L. (1990). A relationship between the static dipole polarizability, the global softness, and the fukui function. Journal of the American Chemical Society, 112(4), 1490–1492. Vela, A., & Gázquez, J. L. (1990). A relationship between the static dipole polarizability, the global softness, and the fukui function. Journal of the American Chemical Society, 112(4), 1490–1492.
go back to reference Vijayalakshmi, S., Lan, A., Iqbal, Z., & Grebel, H. (2002). Nonlinear optical properties of laser ablated silicon nanostructures. Journal of Applied Physics, 92(5), 2490–2494. Vijayalakshmi, S., Lan, A., Iqbal, Z., & Grebel, H. (2002). Nonlinear optical properties of laser ablated silicon nanostructures. Journal of Applied Physics, 92(5), 2490–2494.
go back to reference Wang, B.-C., Chou, Y.-M., Deng, J.-P., & Dung, Y.-T. (2008). Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation. Journal of Physical Chemistry A, 112(28), 6351–6357. Wang, B.-C., Chou, Y.-M., Deng, J.-P., & Dung, Y.-T. (2008). Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation. Journal of Physical Chemistry A, 112(28), 6351–6357.
go back to reference Wang, J., Ma, L., Zhao, J., & Jackson, K. A. (2009). Structural growth behavior and polarizability of Cd\(_{n}\)Te\(_{n}\) (n = 1–14) clusters. Journal of Chemical Physics, 130(21), 214307/1–214307/8. Wang, J., Ma, L., Zhao, J., & Jackson, K. A. (2009). Structural growth behavior and polarizability of Cd\(_{n}\)Te\(_{n}\) (n = 1–14) clusters. Journal of Chemical Physics, 130(21), 214307/1–214307/8.
go back to reference Wang, X. Q., Clark, S. J., & Abram, R. A. (2004). Ab initio calculations of the structural and electronic properties of Hg\(_{m}\)Te\(_{n}\) cluster. Physical Review B - Condensed Matter and Materials Physics, 70(23), 1–6. Wang, X. Q., Clark, S. J., & Abram, R. A. (2004). Ab initio calculations of the structural and electronic properties of Hg\(_{m}\)Te\(_{n}\) cluster. Physical Review B - Condensed Matter and Materials Physics, 70(23), 1–6.
go back to reference Wei, S., Barnett, R. N., & Landman, U. (1997). Energetics and structures of neutral and charged sin (n ≤ 10) and sodium-doped Si\(_{n}\)Na clusters. Physical Review B - Condensed Matter and Materials Physics, 55(12), 7935–7944. Wei, S., Barnett, R. N., & Landman, U. (1997). Energetics and structures of neutral and charged sin (n ≤ 10) and sodium-doped Si\(_{n}\)Na clusters. Physical Review B - Condensed Matter and Materials Physics, 55(12), 7935–7944.
go back to reference Williams, R. E. (1992). The polyborane, carborane, carbocation continuum: architectural patterns.Chemical Reviews, 92(2), 177–207. Williams, R. E. (1992). The polyborane, carborane, carbocation continuum: architectural patterns.Chemical Reviews, 92(2), 177–207.
go back to reference Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Von Molnár, S., Roukes, M. L., et al. (2001). Spintronics: a spin-based electronics vision for the future. Science, 294(5546), 1488–1495. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Von Molnár, S., Roukes, M. L., et al. (2001). Spintronics: a spin-based electronics vision for the future. Science, 294(5546), 1488–1495.
go back to reference Wu, F., Lewis, J. W., Kliger, D. S., & Zhang, J. Z. (2003). Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles.Journal of Chemical Physics, 118(1), 12–16. Wu, F., Lewis, J. W., Kliger, D. S., & Zhang, J. Z. (2003). Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles.Journal of Chemical Physics, 118(1), 12–16.
go back to reference Xenides, D. (2006). (Hyper)polarizability dependence on the interatomic distance of N\(_{4}\) (T\(_{d})\): fourth order polynomials and third order derivatives.Journal of Molecular Structure: Theochem, 764(1–3), 41–46. Xenides, D. (2006). (Hyper)polarizability dependence on the interatomic distance of N\(_{4}\) (T\(_{d})\): fourth order polynomials and third order derivatives.Journal of Molecular Structure: Theochem, 764(1–3), 41–46.
go back to reference Xenides, D., & Maroulis, G. (2000). Basis set and electron correlation effects on the first and second static hyperpolarizability of SO\(_{2}\).Chemical Physics Letters, 319(5–6), 618–624. Xenides, D., & Maroulis, G. (2000). Basis set and electron correlation effects on the first and second static hyperpolarizability of SO\(_{2}\).Chemical Physics Letters, 319(5–6), 618–624.
go back to reference Xenides, D., & Maroulis, G. (2006). Electric polarizability and hyperpolarizability of BrCl(X 1\(\Sigma \)+).Journal of Physics B: Atomic, Molecular and Optical Physics, 39(17), 3629–3638. Xenides, D., & Maroulis, G. (2006). Electric polarizability and hyperpolarizability of BrCl(X 1\(\Sigma \)+).Journal of Physics B: Atomic, Molecular and Optical Physics, 39(17), 3629–3638.
go back to reference Xiao, C., Hagelberg, F., & Lester Jr., W. A. (2002). Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 66(7), 754251–7542523. Xiao, C., Hagelberg, F., & Lester Jr., W. A. (2002). Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 66(7), 754251–7542523.
go back to reference Yoo, S., Shao, N., & Zeng, X. C. (2008). Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si\(_{39}\), Si\(_{40}\), Si\(_{50}\), Si\(_{60}\), Si\(_{70}\), and Si\(_{80}\). Journal of Chemical Physics, 128(10), 104316/ 1–104316/9. Yoo, S., Shao, N., & Zeng, X. C. (2008). Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si\(_{39}\), Si\(_{40}\), Si\(_{50}\), Si\(_{60}\), Si\(_{70}\), and Si\(_{80}\). Journal of Chemical Physics, 128(10), 104316/ 1–104316/9.
go back to reference Yoo, S., & Zeng, X. C. (2006). Structures and relative stability of medium-sized silicon clusters. IV. motif-based low-lying clusters Si\(_{21}\)–Si\(_{30}\). Journal of Chemical Physics, 124(5), 1–6. Yoo, S., & Zeng, X. C. (2006). Structures and relative stability of medium-sized silicon clusters. IV. motif-based low-lying clusters Si\(_{21}\)–Si\(_{30}\). Journal of Chemical Physics, 124(5), 1–6.
go back to reference Yoo, S., & Zeng, X. C. (2005). Structures and stability of medium-sized silicon clusters. III. Reexamination of motif transition in growth pattern from Si\(_{15}\) to Si\(_{20}\). Journal of Chemical Physics, 123(16), 1–6. Yoo, S., & Zeng, X. C. (2005). Structures and stability of medium-sized silicon clusters. III. Reexamination of motif transition in growth pattern from Si\(_{15}\) to Si\(_{20}\). Journal of Chemical Physics, 123(16), 1–6.
go back to reference Yoo, S., Zhao, J., Wang, J., & Xiao, C. Z. (2004). Endohedral silicon fullerenes Si\(_{n}\) (27 ≤ n ≤ 39). Journal of the American Chemical Society, 126(42), 13845–13849. Yoo, S., Zhao, J., Wang, J., & Xiao, C. Z. (2004). Endohedral silicon fullerenes Si\(_{n}\) (27 ≤ n ≤ 39). Journal of the American Chemical Society, 126(42), 13845–13849.
go back to reference Yu, D. K., Zhang, R. Q., & Lee, S. T. (2002). Structural transition in nanosized silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 65(24), 2454171–2454176. Yu, D. K., Zhang, R. Q., & Lee, S. T. (2002). Structural transition in nanosized silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 65(24), 2454171–2454176.
go back to reference Zdetsis, A. D. (2001) The real structure of the Si\(_{6}\) cluster. Physical Review A. Atomic, Molecular, and Optical Physics, 64(2), 023202/1–023202/4. Zdetsis, A. D. (2001) The real structure of the Si\(_{6}\) cluster. Physical Review A. Atomic, Molecular, and Optical Physics, 64(2), 023202/1–023202/4.
go back to reference Zdetsis, A. D. (2007a). Analogy of silicon clusters with deltahedral boranes: how far can it go? reexamining the structure of sin and sin 2-, n = 5–13 clusters. Journal of Chemical Physics, 127(24), 244308/1–244308/6. Zdetsis, A. D. (2007a). Analogy of silicon clusters with deltahedral boranes: how far can it go? reexamining the structure of sin and sin 2-, n = 5–13 clusters. Journal of Chemical Physics, 127(24), 244308/1–244308/6.
go back to reference Zdetsis, A. D. (2007b) Fluxional and aromatic behavior in small magic silicon clusters: a full ab initio study of Si\(_{n}\), Si\(_{n}^{1-}\), Si\(_{n}^{2-}\), and Si\(_{n}^{1+}\), n = 6, 10 clusters Journal of Chemical Physics, 127(1), 014314/1–014314/10. Zdetsis, A. D. (2007b) Fluxional and aromatic behavior in small magic silicon clusters: a full ab initio study of Si\(_{n}\), Si\(_{n}^{1-}\), Si\(_{n}^{2-}\), and Si\(_{n}^{1+}\), n = 6, 10 clusters Journal of Chemical Physics, 127(1), 014314/1–014314/10.
go back to reference Zdetsis, A. D. (2008). High-stability hydrogenated silicon-carbon clusters: a full study of Si2C2H2 in comparison to Si2C 2, C2B2H4, and other similar species.Journal of Physical Chemistry A, 112(25), 5712–5719. Zdetsis, A. D. (2008). High-stability hydrogenated silicon-carbon clusters: a full study of Si2C2H2 in comparison to Si2C 2, C2B2H4, and other similar species.Journal of Physical Chemistry A, 112(25), 5712–5719.
go back to reference Zdetsis, A. D. (2009). Silicon-bismuth and germanium-bismuth clusters of high stability. Journal of Physical Chemistry A, 113(44), 12079–12087. Zdetsis, A. D. (2009). Silicon-bismuth and germanium-bismuth clusters of high stability. Journal of Physical Chemistry A, 113(44), 12079–12087.
go back to reference Zhang, D. Y., Bégué, D., & Pouchan, C. (2004). Density functional theory studies of correlations between structure, binding energy, and dipole polarizability in Si\(_{9}\) Si\(_{12}\). Chemical Physics Letters, 398(4–6), 283–286. Zhang, D. Y., Bégué, D., & Pouchan, C. (2004). Density functional theory studies of correlations between structure, binding energy, and dipole polarizability in Si\(_{9}\) Si\(_{12}\). Chemical Physics Letters, 398(4–6), 283–286.
go back to reference Zhao, J., Xie, R.-R., Zhou, X., Chen, X., & Lu, W. (2006). Formation of stable fullerenelike Ga\(_{n}\) As\(_{n}\) clusters (6 ≤ n ≤ 9): gradient-corrected density-functional theory and a genetic global optimization approach. Physical Review B - Condensed Matter and Materials Physics, 74(3), 035319/1–035319/2. Zhao, J., Xie, R.-R., Zhou, X., Chen, X., & Lu, W. (2006). Formation of stable fullerenelike Ga\(_{n}\) As\(_{n}\) clusters (6 ≤ n ≤ 9): gradient-corrected density-functional theory and a genetic global optimization approach. Physical Review B - Condensed Matter and Materials Physics, 74(3), 035319/1–035319/2.
go back to reference Zhao, W., & Cao, P.-L. (2001). Study of the stable structures of Ga\(_{6}\)As\(_{6}\) cluster using FP-LMTO MD method. Physics Letters, Section A: General, Atomic and Solid State Physics, 288(1), 53–57. Zhao, W., & Cao, P.-L. (2001). Study of the stable structures of Ga\(_{6}\)As\(_{6}\) cluster using FP-LMTO MD method. Physics Letters, Section A: General, Atomic and Solid State Physics, 288(1), 53–57.
go back to reference Zhao, W., Cao, P.-L., Li, B.-X., Song, B., & Nakamatsu, H. (2000). Study of the stable structures of Ga\(_{4}\)As\(_{4}\) cluster using FP-LMTO MD method. Physical Review B - Condensed Matter and Materials Physics, 62(24), 17138–17143. Zhao, W., Cao, P.-L., Li, B.-X., Song, B., & Nakamatsu, H. (2000). Study of the stable structures of Ga\(_{4}\)As\(_{4}\) cluster using FP-LMTO MD method. Physical Review B - Condensed Matter and Materials Physics, 62(24), 17138–17143.
go back to reference Zhou, R. L., & Pan, B. C. (2008). Low-lying isomers of Si\(_{n}^{+}\) and Si\(_{n}^{-}\) (n = 31–50) clusters. Journal of Chemical Physics, 128(23), 234302/1–234302/6. Zhou, R. L., & Pan, B. C. (2008). Low-lying isomers of Si\(_{n}^{+}\) and Si\(_{n}^{-}\) (n = 31–50) clusters. Journal of Chemical Physics, 128(23), 234302/1–234302/6.
go back to reference Zhu, X., & Zeng, X. C. (2003). Structures and stabilities of small silicon clusters: ab initio molecular-orbital calculations of Si\(_{7}\)–Si\(_{11}\). Journal of Chemical Physics, 118(8) 3558– 3570. Zhu, X., & Zeng, X. C. (2003). Structures and stabilities of small silicon clusters: ab initio molecular-orbital calculations of Si\(_{7}\)–Si\(_{11}\). Journal of Chemical Physics, 118(8) 3558– 3570.
go back to reference Zhu, X. L., Zeng, X. C., Lei, Y. A., & Pan, B. (2004)Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si\(_{12}\)–Si\(_{20}\). Journal of Chemical Physics, 120(19), 8985–8995. Zhu, X. L., Zeng, X. C., Lei, Y. A., & Pan, B. (2004)Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si\(_{12}\)–Si\(_{20}\). Journal of Chemical Physics, 120(19), 8985–8995.
Metadata
Title
Structures and Electric Properties of Semiconductor clusters
Author
Panaghiotis Karamanis
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_20

Premium Partner