Skip to main content

2012 | OriginalPaper | Buchkapitel

Structures and Electric Properties of Semiconductor clusters

verfasst von : Panaghiotis Karamanis

Erschienen in: Handbook of Computational Chemistry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Materials that exhibit an electrical resistivity between that of conductor and insulator are called semiconductors. Devices based on semiconductor materials, such as transistors, solar cells, light-emitting diodes, digital integrated circuits, solar photovoltaics, and much more, are the base of modern electronics. Silicon is used in most of the semiconductor devices while other materials such as germanium, gallium arsenide, and silicon carbide are used for specialized applications. The obvious theoretical and technological importance of semiconductor materials has led to phenomenal success in making semiconductors with near-atomic precision such as quantum wells, wires, and dots. As a result, there is a lot of undergoing research in semiconductor clusters of small and medium sizes both experimentally and by means of computational chemistry since the miniaturization of devices still continues. In the next pages, we are going to learn which the most studied semiconductor clusters are, we will explore their basic structural features and visit some of the most representative ab initio studies that are considered as works of reference in this research realm. Also, we are going to be introduced to the theory of the electric properties applied in the case of clusters by visiting some of the most illustrative studies into this research area. It is one of the purposes of this presentation to underscore the strong connection between the electric properties of clusters and their structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adolph, B., & Bechstedt, F. (1998). Ab initio second-harmonic susceptibilities of semiconductors: generalized tetrahedron method and quasiparticle effects.Physical Review B - Condensed Matter and Materials Physics, 57(11), 6519–6526. Adolph, B., & Bechstedt, F. (1998). Ab initio second-harmonic susceptibilities of semiconductors: generalized tetrahedron method and quasiparticle effects.Physical Review B - Condensed Matter and Materials Physics, 57(11), 6519–6526.
Zurück zum Zitat Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933–937. Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933–937.
Zurück zum Zitat Al-Laham, M. A., & Raghavachari, K. (1991). Theoretical study of small gallium arsenide clusters. Chemical Physics Letters, 187(1–2), 13–20. Al-Laham, M. A., & Raghavachari, K. (1991). Theoretical study of small gallium arsenide clusters. Chemical Physics Letters, 187(1–2), 13–20.
Zurück zum Zitat Al-Laham, M. A., & Raghavachari, K. (1993). Theoretical study of Ga\(_{4}\)As\(_{4}\), Al\(_{4}\)P\(_{4}\), and Mg\(_{4}\)S\(_{4}\) clusters. Journal of Chemical Physics, 98(11), 8770–8776. Al-Laham, M. A., & Raghavachari, K. (1993). Theoretical study of Ga\(_{4}\)As\(_{4}\), Al\(_{4}\)P\(_{4}\), and Mg\(_{4}\)S\(_{4}\) clusters. Journal of Chemical Physics, 98(11), 8770–8776.
Zurück zum Zitat An, W., Gao, Y., Bulusu, S., & Zeng, X. (2005). Ab initio calculation of bowl, cage, and ring isomers of C\(_{20}\) and C\(_{20}^{-}\). Journal of Chemical Physics, 122, 204109/1–204109/8. An, W., Gao, Y., Bulusu, S., & Zeng, X. (2005). Ab initio calculation of bowl, cage, and ring isomers of C\(_{20}\) and C\(_{20}^{-}\). Journal of Chemical Physics, 122, 204109/1–204109/8.
Zurück zum Zitat Avramopoulos, A., Reis, H., Li, J., & Papadopoulos, M. G. (2004). The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study.Journal of the American Chemical Society, 126(19), 6179–6184. Avramopoulos, A., Reis, H., Li, J., & Papadopoulos, M. G. (2004). The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study.Journal of the American Chemical Society, 126(19), 6179–6184.
Zurück zum Zitat Avramov, P. V., Fedorov, D. G., Sorokin, P. B., Chernozatonskii, L. A., & Gordon, M. S. (2007). Atomic and electronic structure of new hollow-based symmetric families of silicon nanoclusters. Journal of Physical Chemistry C, 111(51), 18824–18830. Avramov, P. V., Fedorov, D. G., Sorokin, P. B., Chernozatonskii, L. A., & Gordon, M. S. (2007). Atomic and electronic structure of new hollow-based symmetric families of silicon nanoclusters. Journal of Physical Chemistry C, 111(51), 18824–18830.
Zurück zum Zitat Backer, J. A. (1997). Molecular beam studies on semiconductor clusters: polarizabilities and chemical bonding.Angewandte Chemie (International Edition in English), 36(13–14), 1390–1404. Backer, J. A. (1997). Molecular beam studies on semiconductor clusters: polarizabilities and chemical bonding.Angewandte Chemie (International Edition in English), 36(13–14), 1390–1404.
Zurück zum Zitat Bai, J., Cui, L.-F., Wang, J., Yoo, S., Li, X., & Jellinek, J., et al. (2006). Structural evolution of anionic silicon clusters Si\(_{N}\)(20 ≤ N ≤ 45). Journal of Physical Chemistry A, 110(3), 908–912. Bai, J., Cui, L.-F., Wang, J., Yoo, S., Li, X., & Jellinek, J., et al. (2006). Structural evolution of anionic silicon clusters Si\(_{N}\)(20 ≤ N ≤ 45). Journal of Physical Chemistry A, 110(3), 908–912.
Zurück zum Zitat Bazterra, V. E., Caputo, M. C., Ferraro, M. B., & Fuentealba, P. (2002). On the theoretical determination of the static dipole polarizability of intermediate size silicon clusters.Journal of Chemical Physics, 117(24), 11158–11165. Bazterra, V. E., Caputo, M. C., Ferraro, M. B., & Fuentealba, P. (2002). On the theoretical determination of the static dipole polarizability of intermediate size silicon clusters.Journal of Chemical Physics, 117(24), 11158–11165.
Zurück zum Zitat Bazterra, V. E., Oña, O., Caputo, M. C., Ferraro, M. B., Fuentealba, P., & Facelli, J. C. (2004). Modified genetic algorithms to model cluster structures in medium-size silicon clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 69(5B), 053202/1–053202/7. Bazterra, V. E., Oña, O., Caputo, M. C., Ferraro, M. B., Fuentealba, P., & Facelli, J. C. (2004). Modified genetic algorithms to model cluster structures in medium-size silicon clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 69(5B), 053202/1–053202/7.
Zurück zum Zitat Bechstedt, F., Adolph, B., & Schmidt, W. G. (1999). Ab initio calculation of linear and nonlinear optical properties of semiconductor structures. Brazilian Journal of Physics, 29(4), 643–651. Bechstedt, F., Adolph, B., & Schmidt, W. G. (1999). Ab initio calculation of linear and nonlinear optical properties of semiconductor structures. Brazilian Journal of Physics, 29(4), 643–651.
Zurück zum Zitat Behrman, E. C., Foehrweiser, R. K., Myers, J. R., French, B. R., & Zandler, M. E. (1994). Possibility of stable spheroid molecules of ZnO. Physical Review A, 49(3), R1543–R1549. Behrman, E. C., Foehrweiser, R. K., Myers, J. R., French, B. R., & Zandler, M. E. (1994). Possibility of stable spheroid molecules of ZnO. Physical Review A, 49(3), R1543–R1549.
Zurück zum Zitat Bergfeld, S., & Daum, W. (2003). Second-harmonic generation in GaAs: experiment versus theoretical predictions of \({\chi }_{xyz}^{(2)}\). Physical Review Letters, 90(3), 036801/1–036801/4. Bergfeld, S., & Daum, W. (2003). Second-harmonic generation in GaAs: experiment versus theoretical predictions of \({\chi }_{xyz}^{(2)}\). Physical Review Letters, 90(3), 036801/1–036801/4.
Zurück zum Zitat Bersuker, I. B. (2001) Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. Chemical Reviews, 101(4), 1067–1114. Bersuker, I. B. (2001) Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. Chemical Reviews, 101(4), 1067–1114.
Zurück zum Zitat Biswas, R., & Hamann, D. R. (1986). Simulated annealing of silicon atom clusters in langevin molecular dynamics. Physical Review B, 34(2), 895–901. Biswas, R., & Hamann, D. R. (1986). Simulated annealing of silicon atom clusters in langevin molecular dynamics. Physical Review B, 34(2), 895–901.
Zurück zum Zitat Bishop, D. M., Kirtman, B., & Champagne, B. (1997). Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. Journal of Chemical Physics, 107(15), 5780–5787. Bishop, D. M., Kirtman, B., & Champagne, B. (1997). Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. Journal of Chemical Physics, 107(15), 5780–5787.
Zurück zum Zitat Blaisten-Barojas, E., & Levesque, D. (1986). Molecular-dynamics simulation of silicon clusters. Physical Review B, 34(6), 3910–3916. Blaisten-Barojas, E., & Levesque, D. (1986). Molecular-dynamics simulation of silicon clusters. Physical Review B, 34(6), 3910–3916.
Zurück zum Zitat Bloembergen, N. (1996). In Nonlinear optics (4th ed.). Singapore: World Scientific. Bloembergen, N. (1996). In Nonlinear optics (4th ed.). Singapore: World Scientific.
Zurück zum Zitat Brédas, J. L., Adant, C., Tackx, P., Persoons, A., & Pierce, B. M. (1994). Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chemical Reviews, 94(1), 243–278. Brédas, J. L., Adant, C., Tackx, P., Persoons, A., & Pierce, B. M. (1994). Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chemical Reviews, 94(1), 243–278.
Zurück zum Zitat Bruchez Jr., M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385), 2013–2016. Bruchez Jr., M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385), 2013–2016.
Zurück zum Zitat Buckingham, A. D. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics, 12, 107–142. Buckingham, A. D. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics, 12, 107–142.
Zurück zum Zitat Butcher P. N., & Cotter, D. (1990). The elements Of nonlinear optics. Cambridge: Cambridge University Press. Butcher P. N., & Cotter, D. (1990). The elements Of nonlinear optics. Cambridge: Cambridge University Press.
Zurück zum Zitat Calarco, T., Datta, A., Fedichey, P., Pazy, E., & Zoller, P. (2003). Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence. Physical Review A - Atomic, Molecular, and Optical Physics, 68(1), 012310/1–012310/21. Calarco, T., Datta, A., Fedichey, P., Pazy, E., & Zoller, P. (2003). Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence. Physical Review A - Atomic, Molecular, and Optical Physics, 68(1), 012310/1–012310/21.
Zurück zum Zitat Castro, A., Marques, M. A. L., Alonso, J. A., Bertsch, G. F., Yabana, K., & Rubio, A. (2002). Can optical spectroscopy directly elucidate the ground state of C20?Journal of Chemical Physics, 116(5), 1930–1933. Castro, A., Marques, M. A. L., Alonso, J. A., Bertsch, G. F., Yabana, K., & Rubio, A. (2002). Can optical spectroscopy directly elucidate the ground state of C20?Journal of Chemical Physics, 116(5), 1930–1933.
Zurück zum Zitat Champagne, B., Spassova, M., Jadin, J.-B., & Kirtman, B. (2002). Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains.Journal of Chemical Physics, 116(9), 3935–3946. Champagne, B., Spassova, M., Jadin, J.-B., & Kirtman, B. (2002). Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains.Journal of Chemical Physics, 116(9), 3935–3946.
Zurück zum Zitat Chen, W., Zhang, J. Z., & Joly, A. G. (2004). Optical properties and potential applications of doped semiconductor nanoparticles. Journal of Nanoscience and Nanotechnology, 4(8), 919–947. Chen, W., Zhang, J. Z., & Joly, A. G. (2004). Optical properties and potential applications of doped semiconductor nanoparticles. Journal of Nanoscience and Nanotechnology, 4(8), 919–947.
Zurück zum Zitat Costales, A., Kandalam, A. K., Franco, R., & Pandey, R. (2002). Theoretical study of structural and vibrational properties of (AlP)\(_{n}\), (AlAs)\(_{n}\), (GaP)\(_{n}\), (GaAs)\(_{n}\), (InP)\(_{n}\), and (InAs)\(_{n}\) clusters with n = 1, 2, 3. Journal of Physical Chemistry B, 106(8), 1940–1944. Costales, A., Kandalam, A. K., Franco, R., & Pandey, R. (2002). Theoretical study of structural and vibrational properties of (AlP)\(_{n}\), (AlAs)\(_{n}\), (GaP)\(_{n}\), (GaAs)\(_{n}\), (InP)\(_{n}\), and (InAs)\(_{n}\) clusters with n = 1, 2, 3. Journal of Physical Chemistry B, 106(8), 1940–1944.
Zurück zum Zitat Deglmann, P., Ahlrichs, R., & Tsereteli, K. (2002). Theoretical studies of ligand-free cadmium selenide and related semiconductor clusters. Journal of Chemical Physics, 116(4), 1585–1597. Deglmann, P., Ahlrichs, R., & Tsereteli, K. (2002). Theoretical studies of ligand-free cadmium selenide and related semiconductor clusters. Journal of Chemical Physics, 116(4), 1585–1597.
Zurück zum Zitat Deng, K., Yang, J., & Chan, C. T. (2000). Calculated polarizabilities of small S clusters. PhysicalReview A - Atomic, Molecular, and Optical Physics, 61 (2), 252011–252014. Deng, K., Yang, J., & Chan, C. T. (2000). Calculated polarizabilities of small S clusters. PhysicalReview A - Atomic, Molecular, and Optical Physics, 61 (2), 252011–252014.
Zurück zum Zitat Dugourd, P., Hudgins, R. R., Tenenbaum, J. M., & Jarrold, M. F. (1998). Observation of new ring isomers for carbon cluster anions. Physical Review Letters, 80(19), 4197–4200. Dugourd, P., Hudgins, R. R., Tenenbaum, J. M., & Jarrold, M. F. (1998). Observation of new ring isomers for carbon cluster anions. Physical Review Letters, 80(19), 4197–4200.
Zurück zum Zitat Feng, Y. P., Boo, T. B., Kwong, H. H., Ong, C. K., Kumar, V., & Kawazoe, Y. (2007). Composition dependence of structural and electronic properties of Ga\(_{m}\)As\(_{n}\) clusters from first principles. Physical Review B - Condensed Matter and Materials Physics, 76(4), 045336/1–045336/8. Feng, Y. P., Boo, T. B., Kwong, H. H., Ong, C. K., Kumar, V., & Kawazoe, Y. (2007). Composition dependence of structural and electronic properties of Ga\(_{m}\)As\(_{n}\) clusters from first principles. Physical Review B - Condensed Matter and Materials Physics, 76(4), 045336/1–045336/8.
Zurück zum Zitat Fournier, R., Sinnott, S. B., & DePristo, A. E. (1992). Density functional study of the bonding in small silicon clusters. Journal of Chemical Physics, 97(6), 4149–4161. Fournier, R., Sinnott, S. B., & DePristo, A. E. (1992). Density functional study of the bonding in small silicon clusters. Journal of Chemical Physics, 97(6), 4149–4161.
Zurück zum Zitat Feynman, R. P. (1939). Forces in Molecules.Physical Reviews, 56(4), 340. Feynman, R. P. (1939). Forces in Molecules.Physical Reviews, 56(4), 340.
Zurück zum Zitat Fielicke, A., Lyon, J. T., Haertelt, M., Meijer, G., Claes, P., & De Haeck, J., et al. (2009). Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization.Journal of Chemical Physics, 131(17), 171105/1–171105/6. Fielicke, A., Lyon, J. T., Haertelt, M., Meijer, G., Claes, P., & De Haeck, J., et al. (2009). Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization.Journal of Chemical Physics, 131(17), 171105/1–171105/6.
Zurück zum Zitat Garcia-Fernandez, P., Bersuker, I. B., & Boggs J. E. (2006). The origin of molecular distortions: a proposed experimental test.Journal of Chemical Physics, 124(6), 044321/1–044321/7. Garcia-Fernandez, P., Bersuker, I. B., & Boggs J. E. (2006). The origin of molecular distortions: a proposed experimental test.Journal of Chemical Physics, 124(6), 044321/1–044321/7.
Zurück zum Zitat Graves, R. M., & Scuseria, G. E. (1991). Ab initio theoretical study of small GaAs clusters. Journal of Chemical Physics, 95(9), 6602–6606. Graves, R. M., & Scuseria, G. E. (1991). Ab initio theoretical study of small GaAs clusters. Journal of Chemical Physics, 95(9), 6602–6606.
Zurück zum Zitat Grimme, S., & Mück-Lichtenfeld, C. (2002). Structural isomers of C\(_{20}\) revisited: the cage and bowl are almost isoenergetic. ChemPhysChem, 3(2), 207–209. Grimme, S., & Mück-Lichtenfeld, C. (2002). Structural isomers of C\(_{20}\) revisited: the cage and bowl are almost isoenergetic. ChemPhysChem, 3(2), 207–209.
Zurück zum Zitat Grossman, J. C., Mitas, L., & Raghavachari, K. (1995). Structure and stability of molecular carbon: importance of electron correlation. Physical Review Letters, 75(21), 3870–3873. Grossman, J. C., Mitas, L., & Raghavachari, K. (1995). Structure and stability of molecular carbon: importance of electron correlation. Physical Review Letters, 75(21), 3870–3873.
Zurück zum Zitat Guillaume, M., Champagne, B., B́gú, D., & Pouchan, C. (2009). Electrostatic interaction schemes for evaluating the polarizability of silicon clusters. Journal of Chemical Physics, 130(13) Guillaume, M., Champagne, B., B́gú, D., & Pouchan, C. (2009). Electrostatic interaction schemes for evaluating the polarizability of silicon clusters. Journal of Chemical Physics, 130(13)
Zurück zum Zitat Gur, I., Fromer, N. A., Geier, M. L., & Alivisatos, A. P. (2005). Materials science: air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310(5747), 462–465. Gur, I., Fromer, N. A., Geier, M. L., & Alivisatos, A. P. (2005). Materials science: air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310(5747), 462–465.
Zurück zum Zitat Gurin, V. S. (1998). Ab-initio calculations of small Cd\(_{x}\)S\(_{y}\) and Zn\(_{x}\)S\(_{y}\) (x,y ≤ 6) clusters. Solid State Communications, 108(6), 389–392. Gurin, V. S. (1998). Ab-initio calculations of small Cd\(_{x}\)S\(_{y}\) and Zn\(_{x}\)S\(_{y}\) (x,y ≤ 6) clusters. Solid State Communications, 108(6), 389–392.
Zurück zum Zitat Gutsev, G. L., O’Neal Jr., R. H., Saha, B. C., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2008a). Optical properties of (GaAs)n clusters (n = 2–16). Journal of Physical Chemistry A, 112(43), 10728–10735. Gutsev, G. L., O’Neal Jr., R. H., Saha, B. C., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2008a). Optical properties of (GaAs)n clusters (n = 2–16). Journal of Physical Chemistry A, 112(43), 10728–10735.
Zurück zum Zitat Gutsev, G. L., Johnson, E., Mochena, M. D., & Bauschlicher Jr., C. W. (2008b). The structure and energetics of (GaAs)\(_{n}\), (GaAs)\(_{n}^{-}\), and (GaAs)\(_{n}^{+}\) (n = 2–15). Journal of Chemical Physics, 128(14), 144707/1–144707/9. Gutsev, G. L., Johnson, E., Mochena, M. D., & Bauschlicher Jr., C. W. (2008b). The structure and energetics of (GaAs)\(_{n}\), (GaAs)\(_{n}^{-}\), and (GaAs)\(_{n}^{+}\) (n = 2–15). Journal of Chemical Physics, 128(14), 144707/1–144707/9.
Zurück zum Zitat Gutsev, G. L., Mochena, M. D., Saha, B. C., & Derosa P. A. (2010). Structures and properties of (GaAs)\(_{n}\) clusters. Journal of Computational and Theoretical Nanoscience, 7, 1–10. Gutsev, G. L., Mochena, M. D., Saha, B. C., & Derosa P. A. (2010). Structures and properties of (GaAs)\(_{n}\) clusters. Journal of Computational and Theoretical Nanoscience, 7, 1–10.
Zurück zum Zitat Hamad, S., Richard, C., Catlow, A., Spanó, E., Matxain, J. M., & Ugalde, J. M. (2005). Structure and properties of ZnS nanoclusters. Journal of Physical Chemistry B, 109(7), 2703–2709. Hamad, S., Richard, C., Catlow, A., Spanó, E., Matxain, J. M., & Ugalde, J. M. (2005). Structure and properties of ZnS nanoclusters. Journal of Physical Chemistry B, 109(7), 2703–2709.
Zurück zum Zitat Headley, A. D. (1987). Substituent effects on the basicity of dimethylamines. Journal of the American Chemical Society, 109(8), 2347–2348. Headley, A. D. (1987). Substituent effects on the basicity of dimethylamines. Journal of the American Chemical Society, 109(8), 2347–2348.
Zurück zum Zitat Hellmann, H. (1937). Einführung in die Quantenchemie (p. 285). Leipzig: Franz Deuticke. Hellmann, H. (1937). Einführung in die Quantenchemie (p. 285). Leipzig: Franz Deuticke.
Zurück zum Zitat Helgaker, T., Jørgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory. Chichester: Wiley. Helgaker, T., Jørgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory. Chichester: Wiley.
Zurück zum Zitat Ho, K.-M., Shvartsburg, A. A., Pan, B., Lu, Z.-Y., Wang, C.-Z., Wacker, J. G., Fye J. L., & Jarrold M. F. (1998). Structures of medium-sized silicon clusters. Nature, 392, 582–585. Ho, K.-M., Shvartsburg, A. A., Pan, B., Lu, Z.-Y., Wang, C.-Z., Wacker, J. G., Fye J. L., & Jarrold M. F. (1998). Structures of medium-sized silicon clusters. Nature, 392, 582–585.
Zurück zum Zitat Hohm, U. (2000). Is there a minimum polarizability principle in chemical reactions? Journal of Physical Chemistry A, 104(36), 8418–8423. Hohm, U. (2000). Is there a minimum polarizability principle in chemical reactions? Journal of Physical Chemistry A, 104(36), 8418–8423.
Zurück zum Zitat Hohm, U., Loose, A., Maroulis, G., & Xenides, D. (2000). Combined experimental and theoretical treatment of the dipole polarizability of P\(_{4}\) clusters.Physical Review A - Atomic, Molecular, and Optical Physics, 61(5), 532021– 532026. Hohm, U., Loose, A., Maroulis, G., & Xenides, D. (2000). Combined experimental and theoretical treatment of the dipole polarizability of P\(_{4}\) clusters.Physical Review A - Atomic, Molecular, and Optical Physics, 61(5), 532021– 532026.
Zurück zum Zitat Honea, E. C., Ogura, A., Murray, C. A., Raghavachari, K., Sprenger, W. O., Jarrold, M. F., & Brown, W. L. (1993). Raman spectra of size-selected silicon clusters and comparison with calculated structures. Nature, 366(6450), 42–44. Honea, E. C., Ogura, A., Murray, C. A., Raghavachari, K., Sprenger, W. O., Jarrold, M. F., & Brown, W. L. (1993). Raman spectra of size-selected silicon clusters and comparison with calculated structures. Nature, 366(6450), 42–44.
Zurück zum Zitat Hossain, D., Hagelberg, F., Pittman Jr., C. U., & Saebo, S. (2007). Structures and stabilities of clusters of Si\(_{12}\), Si\(_{18,}\) and Si\(_{20}\) containing endohedral charged and neutral atomic species. Journal of Physical Chemistry C, 111(37), 13864–13871. Hossain, D., Hagelberg, F., Pittman Jr., C. U., & Saebo, S. (2007). Structures and stabilities of clusters of Si\(_{12}\), Si\(_{18,}\) and Si\(_{20}\) containing endohedral charged and neutral atomic species. Journal of Physical Chemistry C, 111(37), 13864–13871.
Zurück zum Zitat Jackson, K. A., Yang, M., Chaudhuri, I., & Frauenheim, T. (2005). Shape, polarizability, and metallicity in silicon clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 71(3), 1–6. Jackson, K. A., Yang, M., Chaudhuri, I., & Frauenheim, T. (2005). Shape, polarizability, and metallicity in silicon clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 71(3), 1–6.
Zurück zum Zitat Jackson, K., Yang, M., & Jellinek, J. (2007). Site-specific analysis of dielectric properties of finite systems. Journal of Physical Chemistry C, 111(48), 17952–17960. Jackson, K., Yang, M., & Jellinek, J. (2007). Site-specific analysis of dielectric properties of finite systems. Journal of Physical Chemistry C, 111(48), 17952–17960.
Zurück zum Zitat Jackson, K., Pederson, M., Wang, C.-Z., & Ho, K.-M. (1999). Calculated polarizabilities of intermediate-size Si clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 59(5), 3685–3689. Jackson, K., Pederson, M., Wang, C.-Z., & Ho, K.-M. (1999). Calculated polarizabilities of intermediate-size Si clusters. Physical Review A - Atomic, Molecular, and Optical Physics, 59(5), 3685–3689.
Zurück zum Zitat Jackson, K. A., Horoi, M., Chaudhuri, I., Frauenheim, T., & Shvartsburg, A. A. (2004). Unraveling the shape transformation in silicon clusters. Physical Review Letters, 93(1), 013401/1–013401/4. Jackson, K. A., Horoi, M., Chaudhuri, I., Frauenheim, T., & Shvartsburg, A. A. (2004). Unraveling the shape transformation in silicon clusters. Physical Review Letters, 93(1), 013401/1–013401/4.
Zurück zum Zitat Jarrold, M. F., & Bower, J. E. (1992). Mobilities of silicon cluster ions: the reactivity of silicon sausages and spheres. The Journal of Chemical Physics, 96(12), 9180–9190. Jarrold, M. F., & Bower, J. E. (1992). Mobilities of silicon cluster ions: the reactivity of silicon sausages and spheres. The Journal of Chemical Physics, 96(12), 9180–9190.
Zurück zum Zitat Jarrold, M. F., & Constant, V. A. (1991). Silicon cluster ions: evidence for a structural transition. Physical Review Letters, 67(21), 2994–2997. Jarrold, M. F., & Constant, V. A. (1991). Silicon cluster ions: evidence for a structural transition. Physical Review Letters, 67(21), 2994–2997.
Zurück zum Zitat Jelski, D. A., Swift, B. L., Rantala, T. T., Xia, X., & George, T. F. (1991). Structure of the Si\(_{45}\) cluster. Journal of Chemical Physics, 95(11), 8552–8560. Jelski, D. A., Swift, B. L., Rantala, T. T., Xia, X., & George, T. F. (1991). Structure of the Si\(_{45}\) cluster. Journal of Chemical Physics, 95(11), 8552–8560.
Zurück zum Zitat Jha, P. C., Seal, P., Sen, S., Ågren, H., & Chakrabarti, S. (2008). Static and dynamic polarizabilities of (CdSe)\(_{n}\) (n = 1–16) clusters. Computational Materials Science, 44(2), 728–732. Jha, P. C., Seal, P., Sen, S., Ågren, H., & Chakrabarti, S. (2008). Static and dynamic polarizabilities of (CdSe)\(_{n}\) (n = 1–16) clusters. Computational Materials Science, 44(2), 728–732.
Zurück zum Zitat Jose, R., Zhanpeisov, N. U., Fukumura, H., Baba, Y., & Ishikawa, I. (2006). Structure-property correlation of CdSe clusters using experimental results and first-principles DFT calculations. Journal of the American Chemical Society, 128(2), 629–636. Jose, R., Zhanpeisov, N. U., Fukumura, H., Baba, Y., & Ishikawa, I. (2006). Structure-property correlation of CdSe clusters using experimental results and first-principles DFT calculations. Journal of the American Chemical Society, 128(2), 629–636.
Zurück zum Zitat Kanis, D. R., Ratner, M. A., & Marks, T. J. (1994). Design and construction of molecular assemblies with large second-order optical nonlinearities. quantum chemical aspects. Chemical Reviews, 94(1), 195–242. Kanis, D. R., Ratner, M. A., & Marks, T. J. (1994). Design and construction of molecular assemblies with large second-order optical nonlinearities. quantum chemical aspects. Chemical Reviews, 94(1), 195–242.
Zurück zum Zitat Kasuya, A., Sivamohan, R., Barnakov, Y. A., Dmitruk, I. M., Nirasawa, T., & Romanyuk, V. R., et al. (2004). Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials, 3(2), 99–102. Kasuya, A., Sivamohan, R., Barnakov, Y. A., Dmitruk, I. M., Nirasawa, T., & Romanyuk, V. R., et al. (2004). Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials, 3(2), 99–102.
Zurück zum Zitat Karamanis, P., Maroulis, G., & Pouchan, C. (2006a). Basis set and electron correlation effects in all-electron ab initio calculations of the static dipole polarizability of small cadmium selenide clusters, (CdSe)\(_{n}\), n = 1,2,3,4. Chemical Physics, 331(1), 19–25. Karamanis, P., Maroulis, G., & Pouchan, C. (2006a). Basis set and electron correlation effects in all-electron ab initio calculations of the static dipole polarizability of small cadmium selenide clusters, (CdSe)\(_{n}\), n = 1,2,3,4. Chemical Physics, 331(1), 19–25.
Zurück zum Zitat Karamanis, P., Maroulis, G., & Pouchan, C. (2006b). Molecular geometry and polarizability of small cadmium selenide clusters from all-electron Ab initio and density functional theory calculations. Journal of Chemical Physics, 124(7), 071101/ 1–071101/2. Karamanis, P., Maroulis, G., & Pouchan, C. (2006b). Molecular geometry and polarizability of small cadmium selenide clusters from all-electron Ab initio and density functional theory calculations. Journal of Chemical Physics, 124(7), 071101/ 1–071101/2.
Zurück zum Zitat Karamanis, P., Begue, D., & Pouchan, C. (2007a). Ab initio finite field (hyper)polarizability computations on stoichiometric gallium arsenide clusters Ga\(_{n}\)As\(_{n}\) (n = 2–9). Journal of Chemical Physics, 127(9), 094706/1–094706/10. Karamanis, P., Begue, D., & Pouchan, C. (2007a). Ab initio finite field (hyper)polarizability computations on stoichiometric gallium arsenide clusters Ga\(_{n}\)As\(_{n}\) (n = 2–9). Journal of Chemical Physics, 127(9), 094706/1–094706/10.
Zurück zum Zitat Karamanis, P., Zhang-Negrerie, D., & Pouchan, C. (2007b). A critical analysis of the performance of conventional ab initio and DFT methods in the computation of Si\(_{6}\) ground state. Chemical Physics, 331(2–3), 417–426. Karamanis, P., Zhang-Negrerie, D., & Pouchan, C. (2007b). A critical analysis of the performance of conventional ab initio and DFT methods in the computation of Si\(_{6}\) ground state. Chemical Physics, 331(2–3), 417–426.
Zurück zum Zitat Karamanis, P., Pouchan, C., & Leszczynski, J. (2008a). Electric dipole (hyper)polarizabilities of selected X\(_{2}\)Y\(_{2}\) and X\(_{3}\)Y\(_{3}\) (X = Al, Ga, in and Y = P, As): III-V semiconductor clusters. An ab initio comparative study. Journal of Physical Chemistry A, 112(51), 13662–13671. Karamanis, P., Pouchan, C., & Leszczynski, J. (2008a). Electric dipole (hyper)polarizabilities of selected X\(_{2}\)Y\(_{2}\) and X\(_{3}\)Y\(_{3}\) (X = Al, Ga, in and Y = P, As): III-V semiconductor clusters. An ab initio comparative study. Journal of Physical Chemistry A, 112(51), 13662–13671.
Zurück zum Zitat Karamanis, P., Xenides, D., & Leszczynski, J. (2008b). Polarizability evolution on natural and artificial low dimensional binary semiconductor systems: a case study of stoichiometric aluminum phosphide semiconductor clusters. Journal of Chemical Physics, 129(9), 094708/1–094708/12. Karamanis, P., Xenides, D., & Leszczynski, J. (2008b). Polarizability evolution on natural and artificial low dimensional binary semiconductor systems: a case study of stoichiometric aluminum phosphide semiconductor clusters. Journal of Chemical Physics, 129(9), 094708/1–094708/12.
Zurück zum Zitat Karamanis, P., Xenides, D., & Leszcszynski, J. (2008c). The polarizabilities of small stoichiometric aluminum phosphide clusters Al\(_{n}\)P\(_{n}\) (n = 2–9). Ab initio and density functional investigation. Chemical Physics Letters, 457(1–3), 137–142. Karamanis, P., Xenides, D., & Leszcszynski, J. (2008c). The polarizabilities of small stoichiometric aluminum phosphide clusters Al\(_{n}\)P\(_{n}\) (n = 2–9). Ab initio and density functional investigation. Chemical Physics Letters, 457(1–3), 137–142.
Zurück zum Zitat Karamanis, P., & Leszczynski, J. (2008d). Correlations between bonding, size, and second hyperpolarizability (\(\gamma )\) of small semiconductor clusters: ab initio study on Al\(_{n}\)P\(_{n}\) clusters with n = 2, 3, 4, 6, and 9. Journal of Chemical Physics, 128(15), 154323/1–154323/10. Karamanis, P., & Leszczynski, J. (2008d). Correlations between bonding, size, and second hyperpolarizability (\(\gamma )\) of small semiconductor clusters: ab initio study on Al\(_{n}\)P\(_{n}\) clusters with n = 2, 3, 4, 6, and 9. Journal of Chemical Physics, 128(15), 154323/1–154323/10.
Zurück zum Zitat Karamanis, P., Pouchan, C., & Maroulis, G. (2008). Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Physical Review A - Atomic, Molecular, and Optical Physics, 77(1), 013201/1–013201/6. Karamanis, P., Pouchan, C., & Maroulis, G. (2008). Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Physical Review A - Atomic, Molecular, and Optical Physics, 77(1), 013201/1–013201/6.
Zurück zum Zitat Karamanis, P., Carbonnière, P., & Pouchan, C. (2009). Structures and composition-dependent polarizabilities of open- and closed-shell gan asm semiconductor clusters.Physical Review A - Atomic, Molecular, and Optical Physics, 80(5), 053201/1–053201/11. Karamanis, P., Carbonnière, P., & Pouchan, C. (2009). Structures and composition-dependent polarizabilities of open- and closed-shell gan asm semiconductor clusters.Physical Review A - Atomic, Molecular, and Optical Physics, 80(5), 053201/1–053201/11.
Zurück zum Zitat Karamanis, P., & Pouchan, C. (2009). How large are the microscopic electronic dipole (hyper)polarizabilities of Cd\(_{n}\)Te\(_{n}\) bare clusters compared to those of Cd\(_{n}\)S\(_{n}\) and Cd\(_{n}\)Se\(_{n}\)? A systematic ab initio study. Chemical Physics Letters, 474(1–3), 162–167. Karamanis, P., & Pouchan, C. (2009). How large are the microscopic electronic dipole (hyper)polarizabilities of Cd\(_{n}\)Te\(_{n}\) bare clusters compared to those of Cd\(_{n}\)S\(_{n}\) and Cd\(_{n}\)Se\(_{n}\)? A systematic ab initio study. Chemical Physics Letters, 474(1–3), 162–167.
Zurück zum Zitat Karamanis, P., Marchal, R., Carbonnière, P., & Pouchan, C. (2010). Doping effects on the electric response properties of Silicon clusters. A global structure-property investigation of AlSi\(_{n-1}\) clusters (n = 3–10). Chemical Physics Letters, 474(1–3), 59–64. Karamanis, P., Marchal, R., Carbonnière, P., & Pouchan, C. (2010). Doping effects on the electric response properties of Silicon clusters. A global structure-property investigation of AlSi\(_{n-1}\) clusters (n = 3–10). Chemical Physics Letters, 474(1–3), 59–64.
Zurück zum Zitat Karamanis, P., Pouchan, C., Weatherford, C. A., & Gutsev, G. L. (2011). Evolution of properties in prolate (GaAs)\(_{n}\) clusters.Journal of Physical Chemistry C, 115(1), 97–107. Karamanis, P., Pouchan, C., Weatherford, C. A., & Gutsev, G. L. (2011). Evolution of properties in prolate (GaAs)\(_{n}\) clusters.Journal of Physical Chemistry C, 115(1), 97–107.
Zurück zum Zitat Karamanis, P., & Pouchan, C. (2011). On the shape dependence of cluster (hyper)polarizabilities. A combined ab initio and DFT study on large fullerene-like gallium arsenide semiconductor clusters.International Journal of Quantum Chemistry, 111(4), 788–796. Karamanis, P., & Pouchan, C. (2011). On the shape dependence of cluster (hyper)polarizabilities. A combined ab initio and DFT study on large fullerene-like gallium arsenide semiconductor clusters.International Journal of Quantum Chemistry, 111(4), 788–796.
Zurück zum Zitat Kaxiras, E., & Jackson, K. (1993). Shape of small silicon clusters. Physical Review Letters, 71(5), 727–730. Kaxiras, E., & Jackson, K. (1993). Shape of small silicon clusters. Physical Review Letters, 71(5), 727–730.
Zurück zum Zitat Kim, H.-Y., Sofo, J. O., Velegol, D., Cole, M. W., & Mukhopadhyay, G. (2005). Static polarizabilities of dielectric nanoclusters.Physical Review A - Atomic, Molecular, and Optical Physics, 72(5), 1–8. Kim, H.-Y., Sofo, J. O., Velegol, D., Cole, M. W., & Mukhopadhyay, G. (2005). Static polarizabilities of dielectric nanoclusters.Physical Review A - Atomic, Molecular, and Optical Physics, 72(5), 1–8.
Zurück zum Zitat Koch, W., & Holthausen, M. C. (2000). A Chemist’s guide to density functional theory. Chichester: Wiley. Koch, W., & Holthausen, M. C. (2000). A Chemist’s guide to density functional theory. Chichester: Wiley.
Zurück zum Zitat Korambath, P. P., & Karna, S. P. (2000). (Hyper)polarizabilities of GaN, GaP, and GaAs clusters: an ab initio time-dependent Hartree-Fock study. Journal of Physical Chemistry A, 104(20), 4801–4804. Korambath, P. P., & Karna, S. P. (2000). (Hyper)polarizabilities of GaN, GaP, and GaAs clusters: an ab initio time-dependent Hartree-Fock study. Journal of Physical Chemistry A, 104(20), 4801–4804.
Zurück zum Zitat Krishtal, A., Senet, P., Van Alsenoy, C. (2010) Origin of the size-dependence of the polarizability per atom in heterogeneous clusters: the case of AlP clusters. Journal of Chemical Physics, 133(15), 154310/1–154310/11. Krishtal, A., Senet, P., Van Alsenoy, C. (2010) Origin of the size-dependence of the polarizability per atom in heterogeneous clusters: the case of AlP clusters. Journal of Chemical Physics, 133(15), 154310/1–154310/11.
Zurück zum Zitat Kurtz, H. A., Stewart, J. J. P., & Dieter, K. M. (1990). Calculation of the nonlinear optical properties of molecules.Journal of Computational Chemistry, 11(1), 82–87. Kurtz, H. A., Stewart, J. J. P., & Dieter, K. M. (1990). Calculation of the nonlinear optical properties of molecules.Journal of Computational Chemistry, 11(1), 82–87.
Zurück zum Zitat Lan, Y.-Z., Cheng, W.-D., Wu, D.-S., Shen, J., Huang, S.-P., Zhang, H., Gong, Y.-J., & Li, F.-F. (2006). A theoretical investigation of hyperpolarizability for small Ga\(_{n}\)As\(_{m}\) (n + m = 4–10) clusters. Journal of Chemical Physics, 124(9), 094302/ 1–094302/8. Lan, Y.-Z., Cheng, W.-D., Wu, D.-S., Shen, J., Huang, S.-P., Zhang, H., Gong, Y.-J., & Li, F.-F. (2006). A theoretical investigation of hyperpolarizability for small Ga\(_{n}\)As\(_{m}\) (n + m = 4–10) clusters. Journal of Chemical Physics, 124(9), 094302/ 1–094302/8.
Zurück zum Zitat Lan, Y., Cheng, W., Wu, D., Li, X., Zhang, H., & Gong, Y. (2003). TDHF-SOS treatments on linear and nonlinear optical properties of III-V semiconductor clusters (Ga\(_{3}\)As\(_{3}\), Ga\(_{3}\)Sb\(_{3}\), In\(_{3}\)P\(_{3}\), In\(_{3}\)As\(_{3}\), In\(_{3}\)Sb\(_{3})\).Chemical Physics Letters, 372 (5–6), 645–649. Lan, Y., Cheng, W., Wu, D., Li, X., Zhang, H., & Gong, Y. (2003). TDHF-SOS treatments on linear and nonlinear optical properties of III-V semiconductor clusters (Ga\(_{3}\)As\(_{3}\), Ga\(_{3}\)Sb\(_{3}\), In\(_{3}\)P\(_{3}\), In\(_{3}\)As\(_{3}\), In\(_{3}\)Sb\(_{3})\).Chemical Physics Letters, 372 (5–6), 645–649.
Zurück zum Zitat Lan, Y.-Z., Feng, Y.-L., Wen, Y.-H., & Teng, B.-T. (2008). Dynamic second-order hyperpolarizabilities of Si\(_{3}\) and Si\(_{4}\) clusters using coupled cluster cubic response theory.Chemical Physics Letters, 461(1–3), 118–121. Lan, Y.-Z., Feng, Y.-L., Wen, Y.-H., & Teng, B.-T. (2008). Dynamic second-order hyperpolarizabilities of Si\(_{3}\) and Si\(_{4}\) clusters using coupled cluster cubic response theory.Chemical Physics Letters, 461(1–3), 118–121.
Zurück zum Zitat Lan, Y.-Z., & Feng, Y.-L. (2009). Study of absorption spectra and (hyper)polarizabilities of SiC\(_{n}\) and Si\(_{n}\)C (n = 2–6) clusters using density functional response approach.Journal of Chemical Physics, 131(5), 054509/1–054509/11. Lan, Y.-Z., & Feng, Y.-L. (2009). Study of absorption spectra and (hyper)polarizabilities of SiC\(_{n}\) and Si\(_{n}\)C (n = 2–6) clusters using density functional response approach.Journal of Chemical Physics, 131(5), 054509/1–054509/11.
Zurück zum Zitat Leitsmann, R., Schmidt, W. G., Hahn, P. H., & Bechstedt, F. (2005). Second-harmonic polarizability including electron-hole attraction from band-structure theory. Physical Review B - Condensed Matter and Materials Physics, 71(19), 195209/1–195209/10. Leitsmann, R., Schmidt, W. G., Hahn, P. H., & Bechstedt, F. (2005). Second-harmonic polarizability including electron-hole attraction from band-structure theory. Physical Review B - Condensed Matter and Materials Physics, 71(19), 195209/1–195209/10.
Zurück zum Zitat Li, B.-X. (2005). Stability of medium-sized neutral and charged silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 71(23), 1–7. Li, B.-X. (2005). Stability of medium-sized neutral and charged silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 71(23), 1–7.
Zurück zum Zitat Li, L., Zhou, Z., Wang, X., Huang, W., He, Y., & Yang, M. (2008) First-principles study of static polarizability, first and second hyperpolarizabilities of small-sized ZnO clusters. Physical Chemistry Chemical Physics, 10(45), 6829–6835. Li, L., Zhou, Z., Wang, X., Huang, W., He, Y., & Yang, M. (2008) First-principles study of static polarizability, first and second hyperpolarizabilities of small-sized ZnO clusters. Physical Chemistry Chemical Physics, 10(45), 6829–6835.
Zurück zum Zitat Li, B.-X., Cao, P.-L., & Zhou, X.-Y. (2003). Electronic and geometric structures of Si\(_{n}\)- and Si\(_{n}^{+}\) (n = 2–10) clusters and in comparison with Si\(_{n}\). Physica Status Solidi (B) Basic Research, 238(1), 11–19. Li, B.-X., Cao, P.-L., & Zhou, X.-Y. (2003). Electronic and geometric structures of Si\(_{n}\)- and Si\(_{n}^{+}\) (n = 2–10) clusters and in comparison with Si\(_{n}\). Physica Status Solidi (B) Basic Research, 238(1), 11–19.
Zurück zum Zitat Liao, D. W., & Balasubramanian, K. (1992). Electronic structure of the III-V tetramer clusters and their positive ions.Journal of Chemical Physics, 96(12), 8938–8947. Liao, D. W., & Balasubramanian, K. (1992). Electronic structure of the III-V tetramer clusters and their positive ions.Journal of Chemical Physics, 96(12), 8938–8947.
Zurück zum Zitat Lipscomb, W. N. (1966). Framework rearrangement in boranes and carboranes.Science, 153(3734), 373–378. Lipscomb, W. N. (1966). Framework rearrangement in boranes and carboranes.Science, 153(3734), 373–378.
Zurück zum Zitat Lou, L., Nordlander, P., & Smalley, R. E. (1992). Electronic structure of small GaAs clusters. II. Journal of Chemical Physics, 97(3), 1858–1864. Lou, L., Nordlander, P., & Smalley, R. E. (1992). Electronic structure of small GaAs clusters. II. Journal of Chemical Physics, 97(3), 1858–1864.
Zurück zum Zitat Luis, J. M., Duran, M., Champagne, B., & Kirtman, B. (2000). Determination of vibrational polarizabilities and hyperpolarizabilities using field-induced coordinates.Journal of Chemical Physics, 113 (13), 5203–5213. Luis, J. M., Duran, M., Champagne, B., & Kirtman, B. (2000). Determination of vibrational polarizabilities and hyperpolarizabilities using field-induced coordinates.Journal of Chemical Physics, 113 (13), 5203–5213.
Zurück zum Zitat Lyon, J. T., Gruene, P., Fielicke, A., Meijer, G., Janssens, E., & Claes, P., et al. (2009). Structures of silicon cluster cations in the gas phase. Journal of the American Chemical Society, 131(3), 1115–1121. Lyon, J. T., Gruene, P., Fielicke, A., Meijer, G., Janssens, E., & Claes, P., et al. (2009). Structures of silicon cluster cations in the gas phase. Journal of the American Chemical Society, 131(3), 1115–1121.
Zurück zum Zitat Marchal, R., Carbonnière, P., & Pouchan, C. (2009). A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from density functional theory-based potential energy surfaces: the example of Si\(_{n}\) (n = 3, 15) as a test case. Journal of Chemical Physics, 131(11), 114105/1–114105/9. Marchal, R., Carbonnière, P., & Pouchan, C. (2009). A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from density functional theory-based potential energy surfaces: the example of Si\(_{n}\) (n = 3, 15) as a test case. Journal of Chemical Physics, 131(11), 114105/1–114105/9.
Zurück zum Zitat Marchal, R., Carbonnière, P., & Pouchan, C. (2010). A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from DFT-based potential energy surface. A theoretical study of Sin and Si\(_{n-1}\)Al clusters. International Journal of Quantum Chemistry, 110(12), 2256–2259. Marchal, R., Carbonnière, P., & Pouchan, C. (2010). A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from DFT-based potential energy surface. A theoretical study of Sin and Si\(_{n-1}\)Al clusters. International Journal of Quantum Chemistry, 110(12), 2256–2259.
Zurück zum Zitat Marchal, R., Carbonnière, P., & Pouchan, C. (2011). On the Structures of Non-Stoichiometric GanAsm Clusters (5 n < + m < 8). Journal of Computational and Theoretical Nanosciences, 8(4), 568–578. Marchal, R., Carbonnière, P., & Pouchan, C. (2011). On the Structures of Non-Stoichiometric GanAsm Clusters (5 n < + m < 8). Journal of Computational and Theoretical Nanosciences, 8(4), 568–578.
Zurück zum Zitat Maroulis, G., Karamanis, P., & Pouchan, C. (2007). Hyperpolarizability of GaAs dimer is not negative. Journal of Chemical Physics, 126(15), 154316/1–154316/5. Maroulis, G., Karamanis, P., & Pouchan, C. (2007). Hyperpolarizability of GaAs dimer is not negative. Journal of Chemical Physics, 126(15), 154316/1–154316/5.
Zurück zum Zitat Maroulis, G. (2008). How large is the static electric (hyper)polarizability anisotropy in HXeI? Journal of Chemical Physics, 129(4), 044314/ 1–044314/6. Maroulis, G. (2008). How large is the static electric (hyper)polarizability anisotropy in HXeI? Journal of Chemical Physics, 129(4), 044314/ 1–044314/6.
Zurück zum Zitat Maroulis, G. (2004). Bonding and (hyper) polarizability in the sodium dimer. Journal of Chemical Physics, 121(21), 10519–10524. Maroulis, G. (2004). Bonding and (hyper) polarizability in the sodium dimer. Journal of Chemical Physics, 121(21), 10519–10524.
Zurück zum Zitat Maroulis, G., Begué, D., & Pouchan, C. (2003). Accurate dipole polarizabilities of small silicon clusters from ab initio and density functional theory calculations. Journal of Chemical Physics, 119(2), 794–797. Maroulis, G., Begué, D., & Pouchan, C. (2003). Accurate dipole polarizabilities of small silicon clusters from ab initio and density functional theory calculations. Journal of Chemical Physics, 119(2), 794–797.
Zurück zum Zitat Maroulis, G. (2003). Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. Journal of Chemical Physics, 118(6), 2673–2687. Maroulis, G. (2003). Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. Journal of Chemical Physics, 118(6), 2673–2687.
Zurück zum Zitat Maroulis, G., & Pouchan, C. (2003). Size and electric dipole (hyper)polarizability in small cadmium sulfide clusters: an ab initio study on (CdS)\(_{n}\), n = 1, 2, and 4.Journal of Physical Chemistry B, 107(39), 10683–10686. Maroulis, G., & Pouchan, C. (2003). Size and electric dipole (hyper)polarizability in small cadmium sulfide clusters: an ab initio study on (CdS)\(_{n}\), n = 1, 2, and 4.Journal of Physical Chemistry B, 107(39), 10683–10686.
Zurück zum Zitat Marks, T. J., & Ratner, M. A. (1995). Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angewandte Chemie(International Edition in English), 34(2), 155–173. Marks, T. J., & Ratner, M. A. (1995). Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angewandte Chemie(International Edition in English), 34(2), 155–173.
Zurück zum Zitat Matxain, J. M., Fowler, J. E., & Ugalde, J. M. (2000). Small clusters of II-VI materials: Zn\(_{i}\)O\(_{i}\), i = 1–9. Physical Review A - Atomic, Molecular, and Optical Physics, 62(5), 053201/1–053201/10. Matxain, J. M., Fowler, J. E., & Ugalde, J. M. (2000). Small clusters of II-VI materials: Zn\(_{i}\)O\(_{i}\), i = 1–9. Physical Review A - Atomic, Molecular, and Optical Physics, 62(5), 053201/1–053201/10.
Zurück zum Zitat Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2001). Small clusters of group-(II-VI) materials: Zn\(_{i}\)X\(_{i}\), X = Se,Te, i = 1–9. Physical Review A. Atomic, Molecular, and Optical Physics, 64(5), 532011–532018. Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2001). Small clusters of group-(II-VI) materials: Zn\(_{i}\)X\(_{i}\), X = Se,Te, i = 1–9. Physical Review A. Atomic, Molecular, and Optical Physics, 64(5), 532011–532018.
Zurück zum Zitat Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2003). Clusters of group II–VI materials: Cd\(_{i}\)O\(_{i}\) (i ≤ 15). Journal of Physical Chemistry A, 107(46), 9918–9923. Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2003). Clusters of group II–VI materials: Cd\(_{i}\)O\(_{i}\) (i ≤ 15). Journal of Physical Chemistry A, 107(46), 9918–9923.
Zurück zum Zitat Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2004). Clusters of II–VI materials: Cd\(_{i}\)X\(_{i}\), X = S, Se, Te, i ≤ 16. Journal of Physical Chemistry A, 108(47), 10502–10508. Matxain, J. M., Mercero, J. M., Fowler, J. E., & Ugalde, J. M. (2004). Clusters of II–VI materials: Cd\(_{i}\)X\(_{i}\), X = S, Se, Te, i ≤ 16. Journal of Physical Chemistry A, 108(47), 10502–10508.
Zurück zum Zitat McLean, A. D., & Yoshimine, M. (1967). Theory of molecular polarizabilities.Journal of Chemical Physics, 47(6), 1927–1935. McLean, A. D., & Yoshimine, M. (1967). Theory of molecular polarizabilities.Journal of Chemical Physics, 47(6), 1927–1935.
Zurück zum Zitat Menon, M., & Subbaswamy, K. R. (1995). Structure and stability of Si45 clusters: a generalized tight-binding molecular-dynamics approach. Physical Review B, 51(24), 17952–17956. Menon, M., & Subbaswamy, K. R. (1995). Structure and stability of Si45 clusters: a generalized tight-binding molecular-dynamics approach. Physical Review B, 51(24), 17952–17956.
Zurück zum Zitat Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., & Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., & Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544.
Zurück zum Zitat Mitas, L., Grossman, J. C., Stich, I., & Tobik, J. (2000). Silicon clusters of intermediate size: energetics, dynamics, and thermal effects. Physical Review Letters, 84(7), 1479–1482. Mitas, L., Grossman, J. C., Stich, I., & Tobik, J. (2000). Silicon clusters of intermediate size: energetics, dynamics, and thermal effects. Physical Review Letters, 84(7), 1479–1482.
Zurück zum Zitat Murray, C. B., Kagan, C. R., & Bawendi, M. G. (2000). Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 30, 545–610. Murray, C. B., Kagan, C. R., & Bawendi, M. G. (2000). Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 30, 545–610.
Zurück zum Zitat Nagle, J. K. (1990). Atomic polarizability and electronegativity. Journal of the American Chemical Society, 112(12), 4741–4747. Nagle, J. K. (1990). Atomic polarizability and electronegativity. Journal of the American Chemical Society, 112(12), 4741–4747.
Zurück zum Zitat Nair, N. N., Bredow, T., & Jug, K. (2004). Molecular dynamics implementation in MSINDO: study of silicon clusters. Journal of Computational Chemistry, 25(10), 1255–1263. Nair, N. N., Bredow, T., & Jug, K. (2004). Molecular dynamics implementation in MSINDO: study of silicon clusters. Journal of Computational Chemistry, 25(10), 1255–1263.
Zurück zum Zitat Nigam, S., Majumder, C., & Kulshreshtha, S. K. (2004). Structural and electronic properties of Si\(_{n}\), Si\(_{n}^{+}\), and AlSi\(_{n}^{-1}\) (n = 2–13) clusters: theoretical investigation based on ab initio molecular orbital theory. Journal of Chemical Physics, 121(16), 7756–7763. Nigam, S., Majumder, C., & Kulshreshtha, S. K. (2004). Structural and electronic properties of Si\(_{n}\), Si\(_{n}^{+}\), and AlSi\(_{n}^{-1}\) (n = 2–13) clusters: theoretical investigation based on ab initio molecular orbital theory. Journal of Chemical Physics, 121(16), 7756–7763.
Zurück zum Zitat O’Brien, S. C., Liu, Y., Zhang, Q., Heath, J. R., Tittel, F. K., & Curl, R. F., et al. (1985). Supersonic cluster beams of III-V semiconductors: Ga\(_{x}\)As\(_{y}\). Journal of Chemical Physics, 84(7), 4074–4079. O’Brien, S. C., Liu, Y., Zhang, Q., Heath, J. R., Tittel, F. K., & Curl, R. F., et al. (1985). Supersonic cluster beams of III-V semiconductors: Ga\(_{x}\)As\(_{y}\). Journal of Chemical Physics, 84(7), 4074–4079.
Zurück zum Zitat Papadopoulos, M. G., Reis, H., Avramopoulos, A., Erkoç, S., & Amirouche, L. (2005). A comparative study of the dipole polarizability of some Zn clusters.Journal of Physical Chemistry B, 109(40), 18822–18830. Papadopoulos, M. G., Reis, H., Avramopoulos, A., Erkoç, S., & Amirouche, L. (2005). A comparative study of the dipole polarizability of some Zn clusters.Journal of Physical Chemistry B, 109(40), 18822–18830.
Zurück zum Zitat Papadopoulos, M. G., Reis, H., Avramopoulos, A., Erkoç, S., & Amirouche, L. (2006). Polarizabilities and second hyperpolarizabilities of Zn\(_{m}\)Cd\(_{n}\) clusters.Molecular Physics, 104(13–14), 2027–2036. Papadopoulos, M. G., Reis, H., Avramopoulos, A., Erkoç, S., & Amirouche, L. (2006). Polarizabilities and second hyperpolarizabilities of Zn\(_{m}\)Cd\(_{n}\) clusters.Molecular Physics, 104(13–14), 2027–2036.
Zurück zum Zitat Parr, R. G., & Chattaraj, P. K. (1991). Principle of maximum hardness. Journal of the American Chemical Society, 113(5), 1854–1855. Parr, R. G., & Chattaraj, P. K. (1991). Principle of maximum hardness. Journal of the American Chemical Society, 113(5), 1854–1855.
Zurück zum Zitat Pedroza, L. S., & Da Silva, A. J. R. (2007). Ab initio monte carlo simulations applied to Si\(_{5}\) cluster. Physical Review B - Condensed Matter and Materials Physics, 75(24), 245331/1–245331/10. Pedroza, L. S., & Da Silva, A. J. R. (2007). Ab initio monte carlo simulations applied to Si\(_{5}\) cluster. Physical Review B - Condensed Matter and Materials Physics, 75(24), 245331/1–245331/10.
Zurück zum Zitat Peng, X., Wickham, J., & Alivisatos, A. P. (1998). Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: ‘Focusing’ of size distributions. Journal of the American Chemical Society, 120(21), 5343–5344. Peng, X., Wickham, J., & Alivisatos, A. P. (1998). Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: ‘Focusing’ of size distributions. Journal of the American Chemical Society, 120(21), 5343–5344.
Zurück zum Zitat Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., et al. (2000). Shape control of CdSe nanocrystals. Nature, 404(6773), 59–61. Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., et al. (2000). Shape control of CdSe nanocrystals. Nature, 404(6773), 59–61.
Zurück zum Zitat Pool, R. (1990). Clusters: strange morsels of matter. Science, 248(4960), 1186–1188. Pool, R. (1990). Clusters: strange morsels of matter. Science, 248(4960), 1186–1188.
Zurück zum Zitat Pouchan, C., Bégué, D., & Zhang, D. Y. (2004). Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Si\(_{n}\)(n = 3–10).Journal of Chemical Physics, 121(10), 4628–4634. Pouchan, C., Bégué, D., & Zhang, D. Y. (2004). Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Si\(_{n}\)(n = 3–10).Journal of Chemical Physics, 121(10), 4628–4634.
Zurück zum Zitat Powell, G. D., Wang, J.-F., & Aspnes, D. E. (2002). Simplified bond-hyperpolarizability model of second harmonic generation. Physical Review B - Condensed Matter and Materials Physics, 65(20), 205320/1–205320/8. Powell, G. D., Wang, J.-F., & Aspnes, D. E. (2002). Simplified bond-hyperpolarizability model of second harmonic generation. Physical Review B - Condensed Matter and Materials Physics, 65(20), 205320/1–205320/8.
Zurück zum Zitat Prinzbach, H., Weller, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L. T., et al. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C\(_{20}\). Nature, 407(6800), 60–63. Prinzbach, H., Weller, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L. T., et al. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C\(_{20}\). Nature, 407(6800), 60–63.
Zurück zum Zitat Pushpa, R., Narasimhan, S., & Waghmare, U. (2004). Symmetries, vibrational instabilities, and routes to stable structures of clusters of Al, Sn, and As. Journal of Chemical Physics, 121(11), 5211–5220. Pushpa, R., Narasimhan, S., & Waghmare, U. (2004). Symmetries, vibrational instabilities, and routes to stable structures of clusters of Al, Sn, and As. Journal of Chemical Physics, 121(11), 5211–5220.
Zurück zum Zitat Raghavachari, K., & Logovinsky, V. (1985). Structure and bonding in small silicon clusters. Physical Review Letters, 55(26), 2853–2856. Raghavachari, K., & Logovinsky, V. (1985). Structure and bonding in small silicon clusters. Physical Review Letters, 55(26), 2853–2856.
Zurück zum Zitat Raghavachari, K., & Rohlfing, C. M. (1988). Bonding and stabilities of small silicon clusters: a theoretical study of Si\(_{7}\)–Si\(_{10}\). Journal of Chemical Physics, 89(4), 2219–2234. Raghavachari, K., & Rohlfing, C. M. (1988). Bonding and stabilities of small silicon clusters: a theoretical study of Si\(_{7}\)–Si\(_{10}\). Journal of Chemical Physics, 89(4), 2219–2234.
Zurück zum Zitat Raptis, S. G., Papadopoulos, M. G., & Sadlej, A. J. (1999). The correlation, relativistic, and vibrational contributions to the dipole moments, polarizabilities, and first and second hyperpolarizabilities of ZnS, CdS, and HgS.Journal of Chemical Physics, 111(17), 7904–7915. Raptis, S. G., Papadopoulos, M. G., & Sadlej, A. J. (1999). The correlation, relativistic, and vibrational contributions to the dipole moments, polarizabilities, and first and second hyperpolarizabilities of ZnS, CdS, and HgS.Journal of Chemical Physics, 111(17), 7904–7915.
Zurück zum Zitat Reis, H., Papadopoulos, M. G., & Boustani, I. (2000). DFT calculations of static dipole polarizabilities and hyperpolarizabilities for the boron clusters bn (n = 3–8, 10).International Journal of Quantum Chemistry, 78(2), 131–135. Reis, H., Papadopoulos, M. G., & Boustani, I. (2000). DFT calculations of static dipole polarizabilities and hyperpolarizabilities for the boron clusters bn (n = 3–8, 10).International Journal of Quantum Chemistry, 78(2), 131–135.
Zurück zum Zitat Rohlfing, C. M., & Raghavachari, K. A (1990). Theoretical study of small silicon clusters using an effective core potential. Chemical Physics Letters, 167(6), 559–565. Rohlfing, C. M., & Raghavachari, K. A (1990). Theoretical study of small silicon clusters using an effective core potential. Chemical Physics Letters, 167(6), 559–565.
Zurück zum Zitat Roman, E., Yates, J. R., Veithen, M., Vanderbilt, D., & Souza, I. (2006). Ab initio study of the nonlinear optics of III-V semiconductors in the terahertz regime. Physical Review B - Condensed Matter and Materials Physics, 74(24), 245204/ 1–245204/9. Roman, E., Yates, J. R., Veithen, M., Vanderbilt, D., & Souza, I. (2006). Ab initio study of the nonlinear optics of III-V semiconductors in the terahertz regime. Physical Review B - Condensed Matter and Materials Physics, 74(24), 245204/ 1–245204/9.
Zurück zum Zitat Sanville, E., Burnin, A., & BelBruno, J. J. (2006). Experimental and computational study of small (n = 1–16) stoichiometric zinc and cadmium chalcogenide clusters. Journal of Physical Chemistry A, 110(7), 2378–2386. Sanville, E., Burnin, A., & BelBruno, J. J. (2006). Experimental and computational study of small (n = 1–16) stoichiometric zinc and cadmium chalcogenide clusters. Journal of Physical Chemistry A, 110(7), 2378–2386.
Zurück zum Zitat Schäfer, R., Schlecht, S., Woenckhaus, J., & Becker, J. A. (1996). Polarizabilities of isolated semiconductor clusters.Physical Review Letters, 76(3), 471–474. Schäfer, R., Schlecht, S., Woenckhaus, J., & Becker, J. A. (1996). Polarizabilities of isolated semiconductor clusters.Physical Review Letters, 76(3), 471–474.
Zurück zum Zitat Schaller, R. D., & Klimov, V. I. (2006). Non-poissonian exciton populations in semiconductor nanocrystals via carrier multiplication. Physical Review Letters, 96(9), 1–4. Schaller, R. D., & Klimov, V. I. (2006). Non-poissonian exciton populations in semiconductor nanocrystals via carrier multiplication. Physical Review Letters, 96(9), 1–4.
Zurück zum Zitat Schlecht, S., Schäfer, R., Woenckhaus, J., & Becker, J. A. (1995). Electric dipole polarizabilities of isolated gallium arsenide clusters.Chemical Physics Letters, 246(3), 315–320. Schlecht, S., Schäfer, R., Woenckhaus, J., & Becker, J. A. (1995). Electric dipole polarizabilities of isolated gallium arsenide clusters.Chemical Physics Letters, 246(3), 315–320.
Zurück zum Zitat Schnell, M., Herwig, C., & Becker, J. A. (2003). Analysis of semiconductor cluster beam polarization taking small permanent dipole moments into account.Zeitschrift Fur Physikalische Chemie, 217(8), 1003–1030. Schnell, M., Herwig, C., & Becker, J. A. (2003). Analysis of semiconductor cluster beam polarization taking small permanent dipole moments into account.Zeitschrift Fur Physikalische Chemie, 217(8), 1003–1030.
Zurück zum Zitat Sen, S., & Chakrabarti, S. (2006). Frequency-dependent nonlinear optical properties of CdSe clusters. Physical Review B - Condensed Matter and Materials Physics, 74(20), 205435/ 1–205435/7. Sen, S., & Chakrabarti, S. (2006). Frequency-dependent nonlinear optical properties of CdSe clusters. Physical Review B - Condensed Matter and Materials Physics, 74(20), 205435/ 1–205435/7.
Zurück zum Zitat Sokolova, S., Lüchow, A., & Anderson, J. B. (2000). Energetics of carbon clusters C\(_{20}\) from all-electron quantum monte carlo calculations. Chemical Physics Letters, 323(3–4), 229–233. Sokolova, S., Lüchow, A., & Anderson, J. B. (2000). Energetics of carbon clusters C\(_{20}\) from all-electron quantum monte carlo calculations. Chemical Physics Letters, 323(3–4), 229–233.
Zurück zum Zitat Song, K. M., Ray, A. K., & Khowash, P. K. (1994). On the electronic structures of GaAs clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 27(8), 1637–1648. Song, K. M., Ray, A. K., & Khowash, P. K. (1994). On the electronic structures of GaAs clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 27(8), 1637–1648.
Zurück zum Zitat Sun, Q., Wang, Q., Jena, P., Waterman, S., & Kawazoe, Y. (2003). First-principles studies of the geometry and energetics of the Si\(_{36}\) cluster. Physical Review A - Atomic, Molecular, and Optical Physics, 67(6), 632011– 632016. Sun, Q., Wang, Q., Jena, P., Waterman, S., & Kawazoe, Y. (2003). First-principles studies of the geometry and energetics of the Si\(_{36}\) cluster. Physical Review A - Atomic, Molecular, and Optical Physics, 67(6), 632011– 632016.
Zurück zum Zitat Swaminathan, P., Antonov, V. N., Soares, J. A. N. T., Palmer, J. S., & Weaver, J. H. (2006). Cd-based II-VI semiconductor nanostructures produced by buffer-layer-assisted growth: structural evolution and photoluminescence. Physical Review B - Condensed Matter and Materials Physics, 73(12), 1–8. Swaminathan, P., Antonov, V. N., Soares, J. A. N. T., Palmer, J. S., & Weaver, J. H. (2006). Cd-based II-VI semiconductor nanostructures produced by buffer-layer-assisted growth: structural evolution and photoluminescence. Physical Review B - Condensed Matter and Materials Physics, 73(12), 1–8.
Zurück zum Zitat Szabo, A., & Ostlund, N. S. (1989). Modern quantum chemistry. New York: MacMillan. Szabo, A., & Ostlund, N. S. (1989). Modern quantum chemistry. New York: MacMillan.
Zurück zum Zitat Tekin, A., & Hartke, B. (2004). Global geometry optimization of small silicon clusters with empirical potentials and at the DFT level. Physical Chemistry Chemical Physics, 6(3), 503–509. Tekin, A., & Hartke, B. (2004). Global geometry optimization of small silicon clusters with empirical potentials and at the DFT level. Physical Chemistry Chemical Physics, 6(3), 503–509.
Zurück zum Zitat Torrens, F. (2002). Fractal dimension of different structural-type zeolites and of the active sites. Physica E (Amsterdam), 13, 67. Torrens, F. (2002). Fractal dimension of different structural-type zeolites and of the active sites. Physica E (Amsterdam), 13, 67.
Zurück zum Zitat Troparevsky, M. C., & Chelikowsky, J. R. (2001). Structural and electronic properties of CdS and CdSe clusters. Journal of Chemical Physics, 114(2), 943–949. Troparevsky, M. C., & Chelikowsky, J. R. (2001). Structural and electronic properties of CdS and CdSe clusters. Journal of Chemical Physics, 114(2), 943–949.
Zurück zum Zitat Troparevsky, M. C., Kronik, L., & Chelikowsky, J. R. (2002). Ab initio absorption spectra of CdSe clusters.Physical Review B - Condensed Matter and Materials Physics, 65(3), 333111–333114. Troparevsky, M. C., Kronik, L., & Chelikowsky, J. R. (2002). Ab initio absorption spectra of CdSe clusters.Physical Review B - Condensed Matter and Materials Physics, 65(3), 333111–333114.
Zurück zum Zitat Vasiliev, I., Ögüt, S., & Chelikowsky, J. R. (1997). Ab initio calculations for the polarizabilities of small semiconductor clusters.Physical Review Letters, 78(25), 4805–4808. Vasiliev, I., Ögüt, S., & Chelikowsky, J. R. (1997). Ab initio calculations for the polarizabilities of small semiconductor clusters.Physical Review Letters, 78(25), 4805–4808.
Zurück zum Zitat Vela, A., & Gázquez, J. L. (1990). A relationship between the static dipole polarizability, the global softness, and the fukui function. Journal of the American Chemical Society, 112(4), 1490–1492. Vela, A., & Gázquez, J. L. (1990). A relationship between the static dipole polarizability, the global softness, and the fukui function. Journal of the American Chemical Society, 112(4), 1490–1492.
Zurück zum Zitat Vijayalakshmi, S., Lan, A., Iqbal, Z., & Grebel, H. (2002). Nonlinear optical properties of laser ablated silicon nanostructures. Journal of Applied Physics, 92(5), 2490–2494. Vijayalakshmi, S., Lan, A., Iqbal, Z., & Grebel, H. (2002). Nonlinear optical properties of laser ablated silicon nanostructures. Journal of Applied Physics, 92(5), 2490–2494.
Zurück zum Zitat Wang, B.-C., Chou, Y.-M., Deng, J.-P., & Dung, Y.-T. (2008). Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation. Journal of Physical Chemistry A, 112(28), 6351–6357. Wang, B.-C., Chou, Y.-M., Deng, J.-P., & Dung, Y.-T. (2008). Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation. Journal of Physical Chemistry A, 112(28), 6351–6357.
Zurück zum Zitat Wang, J., Ma, L., Zhao, J., & Jackson, K. A. (2009). Structural growth behavior and polarizability of Cd\(_{n}\)Te\(_{n}\) (n = 1–14) clusters. Journal of Chemical Physics, 130(21), 214307/1–214307/8. Wang, J., Ma, L., Zhao, J., & Jackson, K. A. (2009). Structural growth behavior and polarizability of Cd\(_{n}\)Te\(_{n}\) (n = 1–14) clusters. Journal of Chemical Physics, 130(21), 214307/1–214307/8.
Zurück zum Zitat Wang, X. Q., Clark, S. J., & Abram, R. A. (2004). Ab initio calculations of the structural and electronic properties of Hg\(_{m}\)Te\(_{n}\) cluster. Physical Review B - Condensed Matter and Materials Physics, 70(23), 1–6. Wang, X. Q., Clark, S. J., & Abram, R. A. (2004). Ab initio calculations of the structural and electronic properties of Hg\(_{m}\)Te\(_{n}\) cluster. Physical Review B - Condensed Matter and Materials Physics, 70(23), 1–6.
Zurück zum Zitat Wei, S., Barnett, R. N., & Landman, U. (1997). Energetics and structures of neutral and charged sin (n ≤ 10) and sodium-doped Si\(_{n}\)Na clusters. Physical Review B - Condensed Matter and Materials Physics, 55(12), 7935–7944. Wei, S., Barnett, R. N., & Landman, U. (1997). Energetics and structures of neutral and charged sin (n ≤ 10) and sodium-doped Si\(_{n}\)Na clusters. Physical Review B - Condensed Matter and Materials Physics, 55(12), 7935–7944.
Zurück zum Zitat Williams, R. E. (1992). The polyborane, carborane, carbocation continuum: architectural patterns.Chemical Reviews, 92(2), 177–207. Williams, R. E. (1992). The polyborane, carborane, carbocation continuum: architectural patterns.Chemical Reviews, 92(2), 177–207.
Zurück zum Zitat Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Von Molnár, S., Roukes, M. L., et al. (2001). Spintronics: a spin-based electronics vision for the future. Science, 294(5546), 1488–1495. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Von Molnár, S., Roukes, M. L., et al. (2001). Spintronics: a spin-based electronics vision for the future. Science, 294(5546), 1488–1495.
Zurück zum Zitat Wu, F., Lewis, J. W., Kliger, D. S., & Zhang, J. Z. (2003). Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles.Journal of Chemical Physics, 118(1), 12–16. Wu, F., Lewis, J. W., Kliger, D. S., & Zhang, J. Z. (2003). Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles.Journal of Chemical Physics, 118(1), 12–16.
Zurück zum Zitat Xenides, D. (2006). (Hyper)polarizability dependence on the interatomic distance of N\(_{4}\) (T\(_{d})\): fourth order polynomials and third order derivatives.Journal of Molecular Structure: Theochem, 764(1–3), 41–46. Xenides, D. (2006). (Hyper)polarizability dependence on the interatomic distance of N\(_{4}\) (T\(_{d})\): fourth order polynomials and third order derivatives.Journal of Molecular Structure: Theochem, 764(1–3), 41–46.
Zurück zum Zitat Xenides, D., & Maroulis, G. (2000). Basis set and electron correlation effects on the first and second static hyperpolarizability of SO\(_{2}\).Chemical Physics Letters, 319(5–6), 618–624. Xenides, D., & Maroulis, G. (2000). Basis set and electron correlation effects on the first and second static hyperpolarizability of SO\(_{2}\).Chemical Physics Letters, 319(5–6), 618–624.
Zurück zum Zitat Xenides, D., & Maroulis, G. (2006). Electric polarizability and hyperpolarizability of BrCl(X 1\(\Sigma \)+).Journal of Physics B: Atomic, Molecular and Optical Physics, 39(17), 3629–3638. Xenides, D., & Maroulis, G. (2006). Electric polarizability and hyperpolarizability of BrCl(X 1\(\Sigma \)+).Journal of Physics B: Atomic, Molecular and Optical Physics, 39(17), 3629–3638.
Zurück zum Zitat Xiao, C., Hagelberg, F., & Lester Jr., W. A. (2002). Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 66(7), 754251–7542523. Xiao, C., Hagelberg, F., & Lester Jr., W. A. (2002). Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 66(7), 754251–7542523.
Zurück zum Zitat Yoo, S., Shao, N., & Zeng, X. C. (2008). Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si\(_{39}\), Si\(_{40}\), Si\(_{50}\), Si\(_{60}\), Si\(_{70}\), and Si\(_{80}\). Journal of Chemical Physics, 128(10), 104316/ 1–104316/9. Yoo, S., Shao, N., & Zeng, X. C. (2008). Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si\(_{39}\), Si\(_{40}\), Si\(_{50}\), Si\(_{60}\), Si\(_{70}\), and Si\(_{80}\). Journal of Chemical Physics, 128(10), 104316/ 1–104316/9.
Zurück zum Zitat Yoo, S., & Zeng, X. C. (2006). Structures and relative stability of medium-sized silicon clusters. IV. motif-based low-lying clusters Si\(_{21}\)–Si\(_{30}\). Journal of Chemical Physics, 124(5), 1–6. Yoo, S., & Zeng, X. C. (2006). Structures and relative stability of medium-sized silicon clusters. IV. motif-based low-lying clusters Si\(_{21}\)–Si\(_{30}\). Journal of Chemical Physics, 124(5), 1–6.
Zurück zum Zitat Yoo, S., & Zeng, X. C. (2005). Structures and stability of medium-sized silicon clusters. III. Reexamination of motif transition in growth pattern from Si\(_{15}\) to Si\(_{20}\). Journal of Chemical Physics, 123(16), 1–6. Yoo, S., & Zeng, X. C. (2005). Structures and stability of medium-sized silicon clusters. III. Reexamination of motif transition in growth pattern from Si\(_{15}\) to Si\(_{20}\). Journal of Chemical Physics, 123(16), 1–6.
Zurück zum Zitat Yoo, S., Zhao, J., Wang, J., & Xiao, C. Z. (2004). Endohedral silicon fullerenes Si\(_{n}\) (27 ≤ n ≤ 39). Journal of the American Chemical Society, 126(42), 13845–13849. Yoo, S., Zhao, J., Wang, J., & Xiao, C. Z. (2004). Endohedral silicon fullerenes Si\(_{n}\) (27 ≤ n ≤ 39). Journal of the American Chemical Society, 126(42), 13845–13849.
Zurück zum Zitat Yu, D. K., Zhang, R. Q., & Lee, S. T. (2002). Structural transition in nanosized silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 65(24), 2454171–2454176. Yu, D. K., Zhang, R. Q., & Lee, S. T. (2002). Structural transition in nanosized silicon clusters. Physical Review B - Condensed Matter and Materials Physics, 65(24), 2454171–2454176.
Zurück zum Zitat Zdetsis, A. D. (2001) The real structure of the Si\(_{6}\) cluster. Physical Review A. Atomic, Molecular, and Optical Physics, 64(2), 023202/1–023202/4. Zdetsis, A. D. (2001) The real structure of the Si\(_{6}\) cluster. Physical Review A. Atomic, Molecular, and Optical Physics, 64(2), 023202/1–023202/4.
Zurück zum Zitat Zdetsis, A. D. (2007a). Analogy of silicon clusters with deltahedral boranes: how far can it go? reexamining the structure of sin and sin 2-, n = 5–13 clusters. Journal of Chemical Physics, 127(24), 244308/1–244308/6. Zdetsis, A. D. (2007a). Analogy of silicon clusters with deltahedral boranes: how far can it go? reexamining the structure of sin and sin 2-, n = 5–13 clusters. Journal of Chemical Physics, 127(24), 244308/1–244308/6.
Zurück zum Zitat Zdetsis, A. D. (2007b) Fluxional and aromatic behavior in small magic silicon clusters: a full ab initio study of Si\(_{n}\), Si\(_{n}^{1-}\), Si\(_{n}^{2-}\), and Si\(_{n}^{1+}\), n = 6, 10 clusters Journal of Chemical Physics, 127(1), 014314/1–014314/10. Zdetsis, A. D. (2007b) Fluxional and aromatic behavior in small magic silicon clusters: a full ab initio study of Si\(_{n}\), Si\(_{n}^{1-}\), Si\(_{n}^{2-}\), and Si\(_{n}^{1+}\), n = 6, 10 clusters Journal of Chemical Physics, 127(1), 014314/1–014314/10.
Zurück zum Zitat Zdetsis, A. D. (2008). High-stability hydrogenated silicon-carbon clusters: a full study of Si2C2H2 in comparison to Si2C 2, C2B2H4, and other similar species.Journal of Physical Chemistry A, 112(25), 5712–5719. Zdetsis, A. D. (2008). High-stability hydrogenated silicon-carbon clusters: a full study of Si2C2H2 in comparison to Si2C 2, C2B2H4, and other similar species.Journal of Physical Chemistry A, 112(25), 5712–5719.
Zurück zum Zitat Zdetsis, A. D. (2009). Silicon-bismuth and germanium-bismuth clusters of high stability. Journal of Physical Chemistry A, 113(44), 12079–12087. Zdetsis, A. D. (2009). Silicon-bismuth and germanium-bismuth clusters of high stability. Journal of Physical Chemistry A, 113(44), 12079–12087.
Zurück zum Zitat Zhang, D. Y., Bégué, D., & Pouchan, C. (2004). Density functional theory studies of correlations between structure, binding energy, and dipole polarizability in Si\(_{9}\) Si\(_{12}\). Chemical Physics Letters, 398(4–6), 283–286. Zhang, D. Y., Bégué, D., & Pouchan, C. (2004). Density functional theory studies of correlations between structure, binding energy, and dipole polarizability in Si\(_{9}\) Si\(_{12}\). Chemical Physics Letters, 398(4–6), 283–286.
Zurück zum Zitat Zhao, J., Xie, R.-R., Zhou, X., Chen, X., & Lu, W. (2006). Formation of stable fullerenelike Ga\(_{n}\) As\(_{n}\) clusters (6 ≤ n ≤ 9): gradient-corrected density-functional theory and a genetic global optimization approach. Physical Review B - Condensed Matter and Materials Physics, 74(3), 035319/1–035319/2. Zhao, J., Xie, R.-R., Zhou, X., Chen, X., & Lu, W. (2006). Formation of stable fullerenelike Ga\(_{n}\) As\(_{n}\) clusters (6 ≤ n ≤ 9): gradient-corrected density-functional theory and a genetic global optimization approach. Physical Review B - Condensed Matter and Materials Physics, 74(3), 035319/1–035319/2.
Zurück zum Zitat Zhao, W., & Cao, P.-L. (2001). Study of the stable structures of Ga\(_{6}\)As\(_{6}\) cluster using FP-LMTO MD method. Physics Letters, Section A: General, Atomic and Solid State Physics, 288(1), 53–57. Zhao, W., & Cao, P.-L. (2001). Study of the stable structures of Ga\(_{6}\)As\(_{6}\) cluster using FP-LMTO MD method. Physics Letters, Section A: General, Atomic and Solid State Physics, 288(1), 53–57.
Zurück zum Zitat Zhao, W., Cao, P.-L., Li, B.-X., Song, B., & Nakamatsu, H. (2000). Study of the stable structures of Ga\(_{4}\)As\(_{4}\) cluster using FP-LMTO MD method. Physical Review B - Condensed Matter and Materials Physics, 62(24), 17138–17143. Zhao, W., Cao, P.-L., Li, B.-X., Song, B., & Nakamatsu, H. (2000). Study of the stable structures of Ga\(_{4}\)As\(_{4}\) cluster using FP-LMTO MD method. Physical Review B - Condensed Matter and Materials Physics, 62(24), 17138–17143.
Zurück zum Zitat Zhou, R. L., & Pan, B. C. (2008). Low-lying isomers of Si\(_{n}^{+}\) and Si\(_{n}^{-}\) (n = 31–50) clusters. Journal of Chemical Physics, 128(23), 234302/1–234302/6. Zhou, R. L., & Pan, B. C. (2008). Low-lying isomers of Si\(_{n}^{+}\) and Si\(_{n}^{-}\) (n = 31–50) clusters. Journal of Chemical Physics, 128(23), 234302/1–234302/6.
Zurück zum Zitat Zhu, X., & Zeng, X. C. (2003). Structures and stabilities of small silicon clusters: ab initio molecular-orbital calculations of Si\(_{7}\)–Si\(_{11}\). Journal of Chemical Physics, 118(8) 3558– 3570. Zhu, X., & Zeng, X. C. (2003). Structures and stabilities of small silicon clusters: ab initio molecular-orbital calculations of Si\(_{7}\)–Si\(_{11}\). Journal of Chemical Physics, 118(8) 3558– 3570.
Zurück zum Zitat Zhu, X. L., Zeng, X. C., Lei, Y. A., & Pan, B. (2004)Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si\(_{12}\)–Si\(_{20}\). Journal of Chemical Physics, 120(19), 8985–8995. Zhu, X. L., Zeng, X. C., Lei, Y. A., & Pan, B. (2004)Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si\(_{12}\)–Si\(_{20}\). Journal of Chemical Physics, 120(19), 8985–8995.
Metadaten
Titel
Structures and Electric Properties of Semiconductor clusters
verfasst von
Panaghiotis Karamanis
Copyright-Jahr
2012
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_20

Premium Partner