Skip to main content
Erschienen in:
Buchtitelbild

2012 | OriginalPaper | Buchkapitel

From Quantum Theory to Computational Chemistry. A Brief Account of Developments

verfasst von : Lucjan Piela

Erschienen in: Handbook of Computational Chemistry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum chemical calculations rely on a few fortunate circumstances, like usually small relativistic and negligible electrodynamic (QED) corrections, and large nuclei-to-electrons mass ratio. Unprecedented progress in computer technology has revolutionized quantum chemistry, making it a valuable tool for experimenters. It is important for computational chemistry to elaborate methods that look at molecules in a multiscale way, provide its global and synthetic description, and compare this description with those for other molecules. Only such a picture can free researchers from seeing molecules as a series of case-by-case studies. Chemistry is a science of analogies and similarities, and computational chemistry should provide the tools for seeing this.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Computational chemistry contributed significantly to applied mathematics, because new methods had to be invented in order to treat the algebraic problems of a previously unknown scale (like for M of the order of billions), see, e.g., Roos (1972).
 
2
That is, derived from the first principles of (non-relativistic) quantum mechanics.
 
3
It is difficult to define what computational chemistry is. Obviously, whatever involves calculations in chemistry might be treated as part of it. This, however, sounds like a pure banality. The same is true with the idea that computational chemistry means chemistry that uses computers. It is questionable whether this problem needs any solution at all. If yes, the author sticks to the opinion that computational chemistry means quantitative description of chemical phenomena at the molecular level.
 
4
Perhaps the best known is GAUSSIAN, elaborated by a large team headed by John Pople.
 
5
The speed as well as the capacity of computer, memory increased about 100 billion times over a period of 40 years. This means that what now takes an hour of computations, would require in 1960 about 10,000 years of computing.
 
6
In addition, we assume the computer is so clever, that it automatically rejects those solutions, which are not square-integrable or do not satisfy the requirements of symmetry for fermions and bosons. Thus, all non-physical solutions are rejected.
 
7
Bond patterns are almost the same for different conformers.
 
8
For a dipeptide one has something like ten energy minima, counting only the backbone conformations (and not counting the side chain conformations for simplicity). For a very small protein of, say, a hundred amino acids, the number of conformations is therefore of the order of 10100, a very large number exceeding the estimated number of atoms in the Universe.
 
9
The low-frequency vibrations may be used as indicators to look at possible instabilities of the molecule, such as dissociation channels, formation of new bonds, etc. Moving all atoms, first according to a low-frequency normal mode vibration and continuing the atomic displacements according to the maximum gradient decrease, we may find the saddle point, and then, sliding down, detect the products of a reaction channel.
 
10
The integration of \(\vert \Psi {\vert }^{2}\) is over the coordinates (space and spin ones) of all the electrons except one (in our case the electron 1 with the coordinates \(\mathbf{r},{\sigma }_{1}\)) and in addition the summation over its spin coordinate \(({\sigma }_{1})\). As a result one obtains a function of the position of the electron 1 in space: \(\rho (\mathbf{r})\). The wave function \(\Psi \) is antisymmetric with respect to exchange of the coordinates of any two electrons, and, therefore, \(\vert \Psi {\vert }^{2}\) is symmetric with respect to such an exchange. Hence, the definition of \(\rho \) is independent of the label of the electron we do not integrate over. According to this definition, \(\rho \) represents nothing else but the density of the electron cloud carrying N electrons, and is proportional to the probability density of finding an electron at position r.
 
11
Strictly speaking the nuclear attractors do not represent critical points, because of the cusp condition (Kato 1957).
 
12
We may also analyze \(\rho \) using a “magnifying glass” represented by − Δρ.
 
13
One has to be aware of a related mathematical trap. Applying even the smallest uniform electric field immediately transforms the problem into one with metastable energy (the global minimum corresponding to dissociation of the system, with the energy equal to \(-\infty \)), see, e.g., Piela (2007), p. 642.
 
Literatur
Zurück zum Zitat Bader, R. F. W. (1994). Atoms in molecules. A quantum theory. Oxford: Clarendon Press. Bader, R. F. W. (1994). Atoms in molecules. A quantum theory. Oxford: Clarendon Press.
Zurück zum Zitat Bloch, F. (1928). PhD Thesis. University of Leipzig. Bloch, F. (1928). PhD Thesis. University of Leipzig.
Zurück zum Zitat Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der Molekeln. AnnalenPhysik,389,457. Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der Molekeln. AnnalenPhysik,389,457.
Zurück zum Zitat Boys, S. F., Cook, G. B., Reeves, C. M., & Shavitt, I. (1956). Automatic fundamental calculations of molecular structure. Nature, 178, 1207.CrossRef Boys, S. F., Cook, G. B., Reeves, C. M., & Shavitt, I. (1956). Automatic fundamental calculations of molecular structure. Nature, 178, 1207.CrossRef
Zurück zum Zitat Brown, G. E., & Ravenhall, D. G. (1951). On the interaction of two electrons. Proceedings of the Royal Society A, 208, 552.CrossRef Brown, G. E., & Ravenhall, D. G. (1951). On the interaction of two electrons. Proceedings of the Royal Society A, 208, 552.CrossRef
Zurück zum Zitat Cotton, F. A. (1990). Chemical applications of group theory (3rd ed.). New York: Wiley. Cotton, F. A. (1990). Chemical applications of group theory (3rd ed.). New York: Wiley.
Zurück zum Zitat Dirac, P. A. M. (1928a). The quantum theory of the electron. Proceedings of the Royal Society (London), A117, 610. Dirac, P. A. M. (1928a). The quantum theory of the electron. Proceedings of the Royal Society (London), A117, 610.
Zurück zum Zitat Dirac, P. A. M. (1928b). The quantum theory of the electron. Part II. Proceedings of the Royal Society (London), A118, 351. Dirac, P. A. M. (1928b). The quantum theory of the electron. Part II. Proceedings of the Royal Society (London), A118, 351.
Zurück zum Zitat Feynman, R. P. (1939). Forces in molecules. Physical Review, 56, 340.CrossRef Feynman, R. P. (1939). Forces in molecules. Physical Review, 56, 340.CrossRef
Zurück zum Zitat Fock, V. (1930a). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61, 126.CrossRef Fock, V. (1930a). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61, 126.CrossRef
Zurück zum Zitat Fock, V. (1930b). “Selfconsistent field” mit Austausch für Natrium. Zeitschrift für Physik, 62, 795.CrossRef Fock, V. (1930b). “Selfconsistent field” mit Austausch für Natrium. Zeitschrift für Physik, 62, 795.CrossRef
Zurück zum Zitat Fukui, K., & Fujimoto, H. (1968). An MO-theoretical interpretation of nature of chemical reactions. I. Partitioning analysis of interaction energy. Bulletin of the Chemical Society of Japan, 41, 1989. Fukui, K., & Fujimoto, H. (1968). An MO-theoretical interpretation of nature of chemical reactions. I. Partitioning analysis of interaction energy. Bulletin of the Chemical Society of Japan, 41, 1989.
Zurück zum Zitat Hartree, D. R. (1928). The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Proceedings of the Cambridge Philosophical Society, 24, 89. Hartree, D. R. (1928). The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Proceedings of the Cambridge Philosophical Society, 24, 89.
Zurück zum Zitat Heitler, W., & London, F. W. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift fü Physik, 44, 455.CrossRef Heitler, W., & London, F. W. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift fü Physik, 44, 455.CrossRef
Zurück zum Zitat Hellmann, H. (1937). Einführung in die quantenchemie. Leipzig: Deuticke. Hellmann, H. (1937). Einführung in die quantenchemie. Leipzig: Deuticke.
Zurück zum Zitat Hund, F. (1927a). Zur Deutung der Molekelspektren. I. Zeitschrift für Physik, 40, 742. Hund, F. (1927a). Zur Deutung der Molekelspektren. I. Zeitschrift für Physik, 40, 742.
Zurück zum Zitat Hund, F. (1927b). Zur Deutung der Molekelspektren. II. Zeitschrift für Physik, 42, 93. Hund, F. (1927b). Zur Deutung der Molekelspektren. II. Zeitschrift für Physik, 42, 93.
Zurück zum Zitat Hund, F. (1927 c). Zur Deutung der Molekelspektren. III. Zeitschrift für Physik, 43, 805. Hund, F. (1927 c). Zur Deutung der Molekelspektren. III. Zeitschrift für Physik, 43, 805.
Zurück zum Zitat Hylleraas, E. A. (1929). Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Zeitschrift für Physik, 54, 347.CrossRef Hylleraas, E. A. (1929). Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Zeitschrift für Physik, 54, 347.CrossRef
Zurück zum Zitat James, H. M., & Coolidge, A. S. (1933). The ground state of the hydrogen molecule. Journal of Chemical Physics, 1, 825.CrossRef James, H. M., & Coolidge, A. S. (1933). The ground state of the hydrogen molecule. Journal of Chemical Physics, 1, 825.CrossRef
Zurück zum Zitat Kato, T. (1957). On the eigenfunctions of many-particle systems in quantum mechanics. Communications on Pure and Applied Mathematics, 10, 151.CrossRef Kato, T. (1957). On the eigenfunctions of many-particle systems in quantum mechanics. Communications on Pure and Applied Mathematics, 10, 151.CrossRef
Zurück zum Zitat Koopmaans, T. C. (1933/1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104. Koopmaans, T. C. (1933/1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104.
Zurück zum Zitat Kołos, W., & Roothaan, C. C. J. (1960). Accurate electronic wave functions for the H\(_{2}\) molecule. Reviews of Modern Physics, 32, 219.CrossRef Kołos, W., & Roothaan, C. C. J. (1960). Accurate electronic wave functions for the H\(_{2}\) molecule. Reviews of Modern Physics, 32, 219.CrossRef
Zurück zum Zitat Łach, G., Jeziorski, B., & Szalewicz, K. (2004). Radiative corrections to the polarizability of helium. Physical Review Letters, 92, 233001.CrossRef Łach, G., Jeziorski, B., & Szalewicz, K. (2004). Radiative corrections to the polarizability of helium. Physical Review Letters, 92, 233001.CrossRef
Zurück zum Zitat Pestka, G., Bylicki, M., & Karwowski, J. (2008). Frontiers in quantum systems in chemistry and physics. In P. J. Grout, J. Maruani, G. Delgado-Barrio, & P. Piecuch (Eds.), Dirac-Coulomb equation: Playing with artifacts (pp. 215–238). Springer, New York/Heidelberg. Pestka, G., Bylicki, M., & Karwowski, J. (2008). Frontiers in quantum systems in chemistry and physics. In P. J. Grout, J. Maruani, G. Delgado-Barrio, & P. Piecuch (Eds.), Dirac-Coulomb equation: Playing with artifacts (pp. 215–238). Springer, New York/Heidelberg.
Zurück zum Zitat Piela, L. (2007). Ideas of quantum chemistry. Amsterdam: Elsevier. Piela, L. (2007). Ideas of quantum chemistry. Amsterdam: Elsevier.
Zurück zum Zitat Roos, B. O. (1972). A new method for large-scale CI calculations. Chemical Physics Letters, 15, 153.CrossRef Roos, B. O. (1972). A new method for large-scale CI calculations. Chemical Physics Letters, 15, 153.CrossRef
Zurück zum Zitat Schrödinger, E. (1926a). Quantisierung als Eigenwertproblem. Annalen Physik, 384, 361.CrossRef Schrödinger, E. (1926a). Quantisierung als Eigenwertproblem. Annalen Physik, 384, 361.CrossRef
Zurück zum Zitat Schrödinger, E. (1926b). Quantisierung als Eigenwertproblem. Annalen Physik, 384, 489.CrossRef Schrödinger, E. (1926b). Quantisierung als Eigenwertproblem. Annalen Physik, 384, 489.CrossRef
Zurück zum Zitat Schrödinger, E. (1926 c). Quantisierung als Eigenwertproblem. Annalen Physik, 385, 437. Schrödinger, E. (1926 c). Quantisierung als Eigenwertproblem. Annalen Physik, 385, 437.
Zurück zum Zitat Schrödinger, E. (1926 d). Quantisierung als Eigenwertproblem. Annalen Physik, 386, 109. Schrödinger, E. (1926 d). Quantisierung als Eigenwertproblem. Annalen Physik, 386, 109.
Zurück zum Zitat Slater, J. (1930). Cohesion in monovalent metals. Physical Review, 35, 509.CrossRef Slater, J. (1930). Cohesion in monovalent metals. Physical Review, 35, 509.CrossRef
Zurück zum Zitat Woodward, R. B., & Hoffmann, R. (1965). Selection rules for sigmatropic reactions. Journal of the American Chemical Society, 87, 2511.CrossRef Woodward, R. B., & Hoffmann, R. (1965). Selection rules for sigmatropic reactions. Journal of the American Chemical Society, 87, 2511.CrossRef
Metadaten
Titel
From Quantum Theory to Computational Chemistry. A Brief Account of Developments
verfasst von
Lucjan Piela
Copyright-Jahr
2012
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_1

Premium Partner