Skip to main content

2012 | OriginalPaper | Buchkapitel

The Position of the Clamped Nuclei Electronic Hamiltonian in Quantum Mechanics

verfasst von : Brian Sutcliffe, R. Guy Woolley

Erschienen in: Handbook of Computational Chemistry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Arguments are advanced to support the view that at present it is not possible to derive molecular structure from the full quantum mechanical Coulomb Hamiltonian associated with a given molecular formula that is customarily regarded as representing the molecule in terms of its constituent electrons and nuclei. However molecular structure may be identified provided that some additional chemically motivated assumptions that lead to the clamped nuclei Hamiltonian are added to the quantum mechanical account.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The work was completed in 1944 and was actually received by the journal in October 1948.
 
2
An elementary example is afforded by the momentum operator \(\hat{p} = -i\hslash d/dq\), which is Hermitian on an appropriately defined class of \({L}^{2}\) functions \(\phi (q)\); for these functions it is self-adjoint on \(-\infty \leq q \leq +\infty \) but this property is lost if either of the \(\infty \) limits is replaced by any finite value a – see, for example, Thirring (1981).
 
3
Some specifics of the implementation of permutational and rotational symmetry in quantum mechanics are discussed in section “The Symmetries of the Clamped Nuclei Electronic Hamiltonian.”
 
4
A similar requirement must be placed on the denominator in Eq. 12 of Kutzelnigg (2007) for the equation to provide a secure definition.
 
5
This means that the permutation and its inverse are always in the same class. A group with this property is said to be an ambivalent group.
 
6
By “constant” here is meant simply that the elements of the matrix are not themselves dependent on the variables.
 
7
It is sometimes convenient to think of the nuclear positions as defining a particular embedding for the basis vectors or coordinate frame.
 
8
Notice that in this approximation the mass of the nucleus is of no consequence, only the charge matters.
 
9
The operator in this form is clearly only possible for finite groups but similar operators are constructible for most infinite groups of interest.
 
10
The Coulomb Hamiltonian for the electrons and nuclei specified by the molecular formula.
 
Literatur
Zurück zum Zitat Born, M., & Huang, K. (1955). Dynamical theory of crystal lattices. Oxford: Oxford University Press. Born, M., & Huang, K. (1955). Dynamical theory of crystal lattices. Oxford: Oxford University Press.
Zurück zum Zitat Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der molekeln. Annalen der Physik, 84, 457.CrossRef Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der molekeln. Annalen der Physik, 84, 457.CrossRef
Zurück zum Zitat Boys, S. F. (1950). Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 200, 542. Boys, S. F. (1950). Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 200, 542.
Zurück zum Zitat Cassam-Chenai, P. (2006). On non-adiabatic potential energy surfaces. Chemical Physics Letters, 420, 354.CrossRef Cassam-Chenai, P. (2006). On non-adiabatic potential energy surfaces. Chemical Physics Letters, 420, 354.CrossRef
Zurück zum Zitat Collins, M. A., & Parsons, D. F. (1993). Implications of rotation-inversion-permutation invariance for analytic molecular potential energy surfaces. The Journal of Chemical Physics, 99, 6756.CrossRef Collins, M. A., & Parsons, D. F. (1993). Implications of rotation-inversion-permutation invariance for analytic molecular potential energy surfaces. The Journal of Chemical Physics, 99, 6756.CrossRef
Zurück zum Zitat Combes, J. M., & Seiler, R. (1980). Spectral properties of atomic and molecular systems. In R. G. Woolley (Ed.), Quantum dynamics of molecules. NATO ASI B57 (p. 435). New York: Plenum. Combes, J. M., & Seiler, R. (1980). Spectral properties of atomic and molecular systems. In R. G. Woolley (Ed.), Quantum dynamics of molecules. NATO ASI B57 (p. 435). New York: Plenum.
Zurück zum Zitat Czub, J., & Wolniewicz, L. (1978). On the non-adiabatic potentials in diatomic molecules. Molecular Physics, 36, 1301.CrossRef Czub, J., & Wolniewicz, L. (1978). On the non-adiabatic potentials in diatomic molecules. Molecular Physics, 36, 1301.CrossRef
Zurück zum Zitat Deshpande, V., & Mahanty, J. (1969). Born–Oppenheimer treatment of the hydrogen atom. American Journal of Physics, 37, 823.CrossRef Deshpande, V., & Mahanty, J. (1969). Born–Oppenheimer treatment of the hydrogen atom. American Journal of Physics, 37, 823.CrossRef
Zurück zum Zitat Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61, 126.CrossRef Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61, 126.CrossRef
Zurück zum Zitat Frolov, A. M. (1999). Bound-state calculations of Coulomb three-body systems. Physical Review A, 59, 4270.CrossRef Frolov, A. M. (1999). Bound-state calculations of Coulomb three-body systems. Physical Review A, 59, 4270.CrossRef
Zurück zum Zitat Hagedorn, G., & Joye, A. (2007). Mathematical analysis of Born–Oppenheimer approximations. In F. Gesztesy, P. Deift, C. Galvez, P. Perry, & W. Schlag. (Eds.), Spectral theory and mathematical physics: A festschrift in honor of Barry Simon’s 60th birthday (p. 203). London: Oxford University Press. Hagedorn, G., & Joye, A. (2007). Mathematical analysis of Born–Oppenheimer approximations. In F. Gesztesy, P. Deift, C. Galvez, P. Perry, & W. Schlag. (Eds.), Spectral theory and mathematical physics: A festschrift in honor of Barry Simon’s 60th birthday (p. 203). London: Oxford University Press.
Zurück zum Zitat Handy, N. C., & Lee, A. M. (1996). The adiabatic approximation. Chemical Physics Letters, 252, 425.CrossRef Handy, N. C., & Lee, A. M. (1996). The adiabatic approximation. Chemical Physics Letters, 252, 425.CrossRef
Zurück zum Zitat Hartree, D. R. (1927). The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 89. Hartree, D. R. (1927). The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 89.
Zurück zum Zitat Hartree, D. R., & Hartree, W. (1936). Self-consistent field, with exchange, for beryllium. II. The (2s)(2p) \(^{3}\)P and \(^{1}\)P excited states. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 154, 588. Hartree, D. R., & Hartree, W. (1936). Self-consistent field, with exchange, for beryllium. II. The (2s)(2p) \(^{3}\)P and \(^{1}\)P excited states. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 154, 588.
Zurück zum Zitat Heitler, W., & London, F. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455.CrossRef Heitler, W., & London, F. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455.CrossRef
Zurück zum Zitat Herrin, J., & Howland, J. S. (1997). The Born–Oppenheimer approximation: Straight-up and with a twist. Reviews in Mathematical Physics, 9, 467.CrossRef Herrin, J., & Howland, J. S. (1997). The Born–Oppenheimer approximation: Straight-up and with a twist. Reviews in Mathematical Physics, 9, 467.CrossRef
Zurück zum Zitat Hinze, J., Alijah, A., & Wolniewicz, L. (1998). Understanding the adiabatic approximation; The accurate data of H\(_{2}\) transferred to H\(_{3}^{+}\). Polish Journal of Chemistry, 72, 1293. Hinze, J., Alijah, A., & Wolniewicz, L. (1998). Understanding the adiabatic approximation; The accurate data of H\(_{2}\) transferred to H\(_{3}^{+}\). Polish Journal of Chemistry, 72, 1293.
Zurück zum Zitat Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, 864.CrossRef Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, 864.CrossRef
Zurück zum Zitat Hunter, G. (1975). Conditional probability amplitudes in wave mechanics. International Journal of Quantum Chemistry, 9, 237.CrossRef Hunter, G. (1975). Conditional probability amplitudes in wave mechanics. International Journal of Quantum Chemistry, 9, 237.CrossRef
Zurück zum Zitat Hunter, G. (1981). Nodeless wave functions and spiky potentials. International Journal of Quantum Chemistry, 19, 755.CrossRef Hunter, G. (1981). Nodeless wave functions and spiky potentials. International Journal of Quantum Chemistry, 19, 755.CrossRef
Zurück zum Zitat Kato, T. (1951). On the existence of solutions of the helium wave equation. Transactions of the American Mathematical Society, 70, 212.CrossRef Kato, T. (1951). On the existence of solutions of the helium wave equation. Transactions of the American Mathematical Society, 70, 212.CrossRef
Zurück zum Zitat Klein, M., Martinez, A., Seiler, R., & Wang, X. P. (1992). On the Born-Oppenheimer expansion for polyatomic molecules. Communications in Mathematical Physics, 143, 607.CrossRef Klein, M., Martinez, A., Seiler, R., & Wang, X. P. (1992). On the Born-Oppenheimer expansion for polyatomic molecules. Communications in Mathematical Physics, 143, 607.CrossRef
Zurück zum Zitat Kołos, W., & Wolniewicz, L. (1963). Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule. Reviews of Modern Physics, 35, 473.CrossRef Kołos, W., & Wolniewicz, L. (1963). Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule. Reviews of Modern Physics, 35, 473.CrossRef
Zurück zum Zitat Kutzelnigg, W. (2007). Which masses are vibrating or rotating in a molecule? Molecular Physics, 105, 2627.CrossRef Kutzelnigg, W. (2007). Which masses are vibrating or rotating in a molecule? Molecular Physics, 105, 2627.CrossRef
Zurück zum Zitat Longuet-Higgins, H. C. (1963). The symmetry groups of non-rigid molecules. Molecular Physics, 6, 445.CrossRef Longuet-Higgins, H. C. (1963). The symmetry groups of non-rigid molecules. Molecular Physics, 6, 445.CrossRef
Zurück zum Zitat McWeeny, R. (1950). Gaussian approximations to wave functions. Nature, 166, 21.CrossRef McWeeny, R. (1950). Gaussian approximations to wave functions. Nature, 166, 21.CrossRef
Zurück zum Zitat Mohallem, J. R., & Tostes, J. G. (2002). The adiabatic approximation to exotic leptonic molecules: Further analysis and a nonlinear equation for conditional amplitudes. Journal of Molecular Structure: Theochem, 580, 27.CrossRef Mohallem, J. R., & Tostes, J. G. (2002). The adiabatic approximation to exotic leptonic molecules: Further analysis and a nonlinear equation for conditional amplitudes. Journal of Molecular Structure: Theochem, 580, 27.CrossRef
Zurück zum Zitat Mulliken, R. S. (1931). Bonding power of electrons and theory of valence. Chemical Reviews, 9, 347.CrossRef Mulliken, R. S. (1931). Bonding power of electrons and theory of valence. Chemical Reviews, 9, 347.CrossRef
Zurück zum Zitat Nakai, H., Hoshino, M., Miyamato, K., & Hyodo, S. (2005). Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. The Journal of Chemical Physics, 122, 164101.CrossRef Nakai, H., Hoshino, M., Miyamato, K., & Hyodo, S. (2005). Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. The Journal of Chemical Physics, 122, 164101.CrossRef
Zurück zum Zitat Pauling, L. (1939). The nature of the chemical bond. Ithaca: Cornell University Press. Pauling, L. (1939). The nature of the chemical bond. Ithaca: Cornell University Press.
Zurück zum Zitat Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69.CrossRef Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69.CrossRef
Zurück zum Zitat Slater, J. C. (1930). Note on Hartree’s method. Physical Review, 35, 210.CrossRef Slater, J. C. (1930). Note on Hartree’s method. Physical Review, 35, 210.CrossRef
Zurück zum Zitat Sutcliffe, B. T. (2000). The decoupling of electronic and nuclear motions in the isolated molecule Schrödinger Hamiltonian. Advances in Chemical Physics, 114, 97. Sutcliffe, B. T. (2000). The decoupling of electronic and nuclear motions in the isolated molecule Schrödinger Hamiltonian. Advances in Chemical Physics, 114, 97.
Zurück zum Zitat Sutcliffe, B. T. (2005). Comment on “Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory”. The Journal of Chemical Physics, 123, 237101.CrossRef Sutcliffe, B. T. (2005). Comment on “Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory”. The Journal of Chemical Physics, 123, 237101.CrossRef
Zurück zum Zitat Sutcliffe, B. T. (2007). The separation of electronic and nuclear motion in the diatomic molecule. Theoretical Chemistry Accounts, 118, 563.CrossRef Sutcliffe, B. T. (2007). The separation of electronic and nuclear motion in the diatomic molecule. Theoretical Chemistry Accounts, 118, 563.CrossRef
Zurück zum Zitat Thirring, W. (1981). Quantum mechanics of atoms and molecules. A course in mathematical physics (Vol. 3, E. M. Harrell, Trans.). Berlin: Springer. Thirring, W. (1981). Quantum mechanics of atoms and molecules. A course in mathematical physics (Vol. 3, E. M. Harrell, Trans.). Berlin: Springer.
Zurück zum Zitat Wilson, E. B. (1979). On the definition of molecular structure in quantum mechanics. International Journal of Quantum Chemistry, 13, 5. Wilson, E. B. (1979). On the definition of molecular structure in quantum mechanics. International Journal of Quantum Chemistry, 13, 5.
Zurück zum Zitat Woolley, R. G., & Sutcliffe, B. T. (1977). Molecular structure and the Born–Oppenheimer approximation. Chemical Physics Letters, 45, 393.CrossRef Woolley, R. G., & Sutcliffe, B. T. (1977). Molecular structure and the Born–Oppenheimer approximation. Chemical Physics Letters, 45, 393.CrossRef
Metadaten
Titel
The Position of the Clamped Nuclei Electronic Hamiltonian in Quantum Mechanics
verfasst von
Brian Sutcliffe
R. Guy Woolley
Copyright-Jahr
2012
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_2

Premium Partner