Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 6/2012

01-06-2012

Studies of electrical resistivity and magnetic properties of nanocrystalline CoFeCu thin films electrodeposited from citrate-added baths

Authors: S. Mehrizi, M. Heydarzadeh Sohi, E. Shafahian, A. A. Khangholi

Published in: Journal of Materials Science: Materials in Electronics | Issue 6/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, nanocrystalline CoFeCu thin films were electrodeposited at different current densities from baths with natural pH (around 5.2) and containing 20 g/L citrate sodium. The relationship of films structure with soft magnetic properties and electrical resistivity, which are required for new generation magnetic head core, were investigated. SEM, EDS, XRD, TEM, VSM and four probe-point methods were used for characterization of the deposited films. The deposited films exhibited very uniform and homogenous structure with co-axis grains (confirmed by (111) and (110) poles figures and TEM images) throughout the coating. Overall, it was noticed that increasing current density from 1 to 24 mA/cm2 reduced both grain size (from 63 to 8 nm) and coercivity (from 20 to 1 Oe) of the films. In addition, plotting Log (Hc) versus Log (D 6) demonstrated that the coercivity of the films followed “D 6 law”. Moreover, increasing current density changed phase structures of the films from FCC (Cu)+FCC (Co) to FCC (Co) and then to FCC (Co)+BCC (Fe). The double phase films exhibited the lowest coercivity in comparison with single phase films due to their finer grain size. However, grain size had no effect on saturation magnetization of the films. An increase in current density up to 10 mA/cm2 also caused the substitution of diamagnetic copper with cobalt and iron in the deposit which led to reduction in saturation magnetization. Increasing current density also led to increasing grain boundaries in the deposits and hence, according to “scattering hypotheses”, enhanced the electrical resistivities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Crozier, Q. Liu, D.G. Ivey, J. Mater. Sci. Mater. Electron. 22, 614–625 (2011)CrossRef B. Crozier, Q. Liu, D.G. Ivey, J. Mater. Sci. Mater. Electron. 22, 614–625 (2011)CrossRef
2.
go back to reference S. Thanikaikarasan, T. Mahalingam, M. Raja, K. Taekyu, K.Y. Deak, J. Mater. Sci. Mater. Electron. 20, 727–734 (2009)CrossRef S. Thanikaikarasan, T. Mahalingam, M. Raja, K. Taekyu, K.Y. Deak, J. Mater. Sci. Mater. Electron. 20, 727–734 (2009)CrossRef
3.
go back to reference Boubatra M, Azizi A, Schmerber G, Dinia A (2011) Morphology, structure, and magnetic properties of electrodeposited Ni films obtained from different pH solutions. J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-011-0366-1 Boubatra M, Azizi A, Schmerber G, Dinia A (2011) Morphology, structure, and magnetic properties of electrodeposited Ni films obtained from different pH solutions. J. Mater. Sci. Mater. Electron. doi:10.​1007/​s10854-011-0366-1
4.
go back to reference E.I. Cooper, C. Bonhote, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, H. Xu, IBM. J. Res. Develop. 49, 103–126 (2005) E.I. Cooper, C. Bonhote, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, H. Xu, IBM. J. Res. Develop. 49, 103–126 (2005)
5.
go back to reference K. Ohashi, N. Morita, T. Tsuda, Y. Nonaka, IEEE Trans. Magn. 35, 2538–2540 (1999)CrossRef K. Ohashi, N. Morita, T. Tsuda, Y. Nonaka, IEEE Trans. Magn. 35, 2538–2540 (1999)CrossRef
8.
go back to reference W. Wanga, G.H. Yuea, Y. Chena, W.B. Mib, H.L. Baib, D.L. Peng, J. Alloy. Compd. 475, 440–445 (2009)CrossRef W. Wanga, G.H. Yuea, Y. Chena, W.B. Mib, H.L. Baib, D.L. Peng, J. Alloy. Compd. 475, 440–445 (2009)CrossRef
9.
go back to reference R.H. Yu, S. Basu, L. Ren, Y. Zhang, A. Parvizi-Majidi, K.M. Unruh, J.Q. Xiao, IEEE Trans. Magn. 36, 3388–3393 (2000)CrossRef R.H. Yu, S. Basu, L. Ren, Y. Zhang, A. Parvizi-Majidi, K.M. Unruh, J.Q. Xiao, IEEE Trans. Magn. 36, 3388–3393 (2000)CrossRef
13.
14.
15.
go back to reference L.L. Wanga, W.T. Zheng, T. Ana, N. Mab, J. Gonga, J. Alloy. Compd. 495, 265–267 (2010)CrossRef L.L. Wanga, W.T. Zheng, T. Ana, N. Mab, J. Gonga, J. Alloy. Compd. 495, 265–267 (2010)CrossRef
16.
go back to reference X. Zhang, S. Wang, J. Zhou, J. Li, D. Jiao, X. Kou, J. Alloy. Compd. 474, 273–278 (2009)CrossRef X. Zhang, S. Wang, J. Zhou, J. Li, D. Jiao, X. Kou, J. Alloy. Compd. 474, 273–278 (2009)CrossRef
17.
go back to reference Y.M. Kima, D. Choia, K.H. Kimb, J. Kimb, S.H. Hanc, H.J. Kimc, J. Magn. Magn. Mater. 239, 498–501 (2002)CrossRef Y.M. Kima, D. Choia, K.H. Kimb, J. Kimb, S.H. Hanc, H.J. Kimc, J. Magn. Magn. Mater. 239, 498–501 (2002)CrossRef
18.
go back to reference S. Hassani, K. Raeissi, M.A. Golozar, J. Appl. Electrochem. 38, 689–694 (2008)CrossRef S. Hassani, K. Raeissi, M.A. Golozar, J. Appl. Electrochem. 38, 689–694 (2008)CrossRef
19.
go back to reference T. Osaka, M. Takai, K. Hayashi, Y. Sogawa, IEEE Trans. Magn. 34, 1432–1434 (1998)CrossRef T. Osaka, M. Takai, K. Hayashi, Y. Sogawa, IEEE Trans. Magn. 34, 1432–1434 (1998)CrossRef
20.
go back to reference A.E. Mohamad, S.M. Rashwan, S.M. Abdel-Wahaab, M.M. Kamel, J. Appl. Electrochem. 33, 1085–1092 (2003)CrossRef A.E. Mohamad, S.M. Rashwan, S.M. Abdel-Wahaab, M.M. Kamel, J. Appl. Electrochem. 33, 1085–1092 (2003)CrossRef
21.
go back to reference J.O. Lee, H.K. Kim, G.H. Kim, W.Y. Jeung, J. Appl. Phys. 99, 08B704-1–08B704-3 (2006) J.O. Lee, H.K. Kim, G.H. Kim, W.Y. Jeung, J. Appl. Phys. 99, 08B704-1–08B704-3 (2006)
22.
go back to reference K.R. Murali, R.P. Richards, J. Mater. Sci. Mater. Electron. 17(5), 393–396 (2006)CrossRef K.R. Murali, R.P. Richards, J. Mater. Sci. Mater. Electron. 17(5), 393–396 (2006)CrossRef
23.
go back to reference O. Ergenemana, K.M. Sivaramana, S. Panéa, E. Pellicer, A. Telekic, A.M. Hirtd, M.D. Barob, B.J. Nelson, Electrochim. Acta 56, 1399–1408 (2011)CrossRef O. Ergenemana, K.M. Sivaramana, S. Panéa, E. Pellicer, A. Telekic, A.M. Hirtd, M.D. Barob, B.J. Nelson, Electrochim. Acta 56, 1399–1408 (2011)CrossRef
24.
go back to reference Y. Tang, D. Zhao, D. Shen, J. Zhang, B. Li, Y. Lu, X. Fan, Thin Solid Films 516, 2094–2099 (2008)CrossRef Y. Tang, D. Zhao, D. Shen, J. Zhang, B. Li, Y. Lu, X. Fan, Thin Solid Films 516, 2094–2099 (2008)CrossRef
25.
go back to reference K.Z. Rozman, J. Kovac, P.J. McGuiness, Z. Samardzija, B. Markoli, S. Kobe, Thin Solid Films 518, 1751–1755 (2010)CrossRef K.Z. Rozman, J. Kovac, P.J. McGuiness, Z. Samardzija, B. Markoli, S. Kobe, Thin Solid Films 518, 1751–1755 (2010)CrossRef
28.
go back to reference S. Mehrizi, M. Heydarzadeh Sohi, S.A. Seyyed Ebrahimi, Surf. Coat. Technol. 205, 4757–4763 (2011)CrossRef S. Mehrizi, M. Heydarzadeh Sohi, S.A. Seyyed Ebrahimi, Surf. Coat. Technol. 205, 4757–4763 (2011)CrossRef
29.
go back to reference N. Kanani, Electroplating—Basic Principle, Processes and Practice (Elsevier, Berlin, 2004) N. Kanani, Electroplating—Basic Principle, Processes and Practice (Elsevier, Berlin, 2004)
30.
go back to reference H. Bakar, ASM Handbook, Vol. 3 Alloy Phase Diagrams (ASM International, Materials Park, Ohio, 1992) H. Bakar, ASM Handbook, Vol. 3 Alloy Phase Diagrams (ASM International, Materials Park, Ohio, 1992)
32.
go back to reference P. Wißmann, H. Ulrich Finzel, Electrical Resistivity of Thin Metal Films (Springer, Berlin, 2007) P. Wißmann, H. Ulrich Finzel, Electrical Resistivity of Thin Metal Films (Springer, Berlin, 2007)
Metadata
Title
Studies of electrical resistivity and magnetic properties of nanocrystalline CoFeCu thin films electrodeposited from citrate-added baths
Authors
S. Mehrizi
M. Heydarzadeh Sohi
E. Shafahian
A. A. Khangholi
Publication date
01-06-2012
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 6/2012
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-011-0568-6

Other articles of this Issue 6/2012

Journal of Materials Science: Materials in Electronics 6/2012 Go to the issue