Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 12/2019

15-05-2019

Studies on the structural and piezoelectric properties of ZnO added on Na0.47K0.47Li0.06NbO3 ceramics prepared by ceramic method using high energy ball milling

Authors: Huidrom Surjalata Devi, Mamata Maisnam

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sodium potassium niobate (KNN) based piezoceramics added with different amount of ZnO were prepared by ceramic method using high energy ball milling. The samples prepared have compositional formula Na0. 47K0.47Li0.06NbO3 + (x) ZnO (x = 0 wt%, 0.5 wt%, 1 wt%, 1.5 wt%, and 2 wt%) and sintered at 1000 °C for 2 h. The crystalline phase, microstructure, electrical properties of the samples such as dielectric constant, dielectric loss as well as a.c conductivity of the prepared samples were investigated. It was observed that the addition of ZnO to Na0.47K0.47Li0.06NbO3 ceramics enhanced the density, electrical properties as well as piezoelectric property. X-ray diffraction (XRD) confirmed a perovskite tetragonal phase in all the samples. The X-ray density was found increased and the maximum value was obtained at 1 wt% ZnO addition Polarization–electric field (P-E) loop for the samples was traced and the remnant polarization value is found to be highest at 1 wt% ZnO addition with maximum piezoelectric constant, d33 ~ 86 pC/N amongst all the samples under study. The results of the various measurements were explained in this paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric ceramics (Academic Press Inc., London, 1971) B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric ceramics (Academic Press Inc., London, 1971)
2.
go back to reference S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997)CrossRef S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997)CrossRef
3.
go back to reference T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693–2700 (2005)CrossRef T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693–2700 (2005)CrossRef
4.
go back to reference M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRef M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRef
5.
go back to reference T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111–124 (2007)CrossRef T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111–124 (2007)CrossRef
6.
go back to reference Y. Gao, et al., Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98 Li0.02 (Nb0.77Ta0.18Sb0.05) O3 ceramic. J. Am. Ceram. Soc. 94, 2968–2973 (2011)CrossRef Y. Gao, et al., Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98 Li0.02 (Nb0.77Ta0.18Sb0.05) O3 ceramic. J. Am. Ceram. Soc. 94, 2968–2973 (2011)CrossRef
7.
go back to reference Y. Zhu, et al., Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3 − 0.24SrTiO3 lead-free piezoceramics. Ceram. Int. 44, 7851–7857 (2018)CrossRef Y. Zhu, et al., Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3 − 0.24SrTiO3 lead-free piezoceramics. Ceram. Int. 44, 7851–7857 (2018)CrossRef
8.
go back to reference M.A. Rafiq, M.E. Costa, P.M. Vilarinho, Pairing high piezoelectric coefficients, d33, with high curie temperature (T C) in lead-free (K, Na)NbO3. ACS Appl. Mater. Interfaces 8, 33755–33764 (2016)CrossRef M.A. Rafiq, M.E. Costa, P.M. Vilarinho, Pairing high piezoelectric coefficients, d33, with high curie temperature (T C) in lead-free (K, Na)NbO3. ACS Appl. Mater. Interfaces 8, 33755–33764 (2016)CrossRef
9.
go back to reference L. Egerton, M.D. Dolores, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRef L. Egerton, M.D. Dolores, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRef
10.
go back to reference F.Z. Yao, Q. Yu, K. Wang, Q. Li, J.F. Li, Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K, Na, Li)(Nb, Ta, Sb)O3 lead-free piezoceramics. RSC Adv. 4, 20062–20068 (2014)CrossRef F.Z. Yao, Q. Yu, K. Wang, Q. Li, J.F. Li, Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K, Na, Li)(Nb, Ta, Sb)O3 lead-free piezoceramics. RSC Adv. 4, 20062–20068 (2014)CrossRef
11.
go back to reference L.A. Ramajo, J. Taub, M.S. Castro, Effect of ZnO addition on the structure, microstructure and dielectric and piezoelectric properties of K0.5Na0.5NbO3 ceramics. Mater. Res. 17, 728–733 (2014)CrossRef L.A. Ramajo, J. Taub, M.S. Castro, Effect of ZnO addition on the structure, microstructure and dielectric and piezoelectric properties of K0.5Na0.5NbO3 ceramics. Mater. Res. 17, 728–733 (2014)CrossRef
12.
go back to reference W. Yang, D. Jin, T. Wang, J. Cheng, Effect of oxide dopants on the structure and electrical properties of (Na0.5K0.5)NbO3-LiSbO3 lead-free piezoelectric ceramics. Phys. B 405, 1918–1921 (2010)CrossRef W. Yang, D. Jin, T. Wang, J. Cheng, Effect of oxide dopants on the structure and electrical properties of (Na0.5K0.5)NbO3-LiSbO3 lead-free piezoelectric ceramics. Phys. B 405, 1918–1921 (2010)CrossRef
13.
go back to reference F. Rubio-marcos, J.J. Romero, M.S. Martín-gonzalez, J.F. Fernández, Effect of stoichiometry and milling processes in the synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction. J. Eur. Ceram. Soc. 30, 2763–2771 (2010)CrossRef F. Rubio-marcos, J.J. Romero, M.S. Martín-gonzalez, J.F. Fernández, Effect of stoichiometry and milling processes in the synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction. J. Eur. Ceram. Soc. 30, 2763–2771 (2010)CrossRef
14.
go back to reference D. Gao, K.W. Kwok, D. Lin, H.L.W. Chan, Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 44, 2466–2470 (2009)CrossRef D. Gao, K.W. Kwok, D. Lin, H.L.W. Chan, Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 44, 2466–2470 (2009)CrossRef
15.
go back to reference J.Y. Fu, P.Y. Liu, J. Cheng, A.S. Bhalla, R. Guo, Optical measurement of the converse piezoelectric d33 coefficients of bulk and microtubular zinc oxide crystals. Appl. Phys. Lett. 90, 1–4 (2007) J.Y. Fu, P.Y. Liu, J. Cheng, A.S. Bhalla, R. Guo, Optical measurement of the converse piezoelectric d33 coefficients of bulk and microtubular zinc oxide crystals. Appl. Phys. Lett. 90, 1–4 (2007)
16.
go back to reference S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, 1072–1074 (2004)CrossRef S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, 1072–1074 (2004)CrossRef
17.
go back to reference S.J. Kim et al., Low temperature sintering of ZnO-Doped 0.01Pb(Mg 1/2 W 1/2)O3−0.41Pb(Ni1/3 Nb 2/3)O3–0.35PbTiO3 –0.23PbZrO3 ceramics. Jpn. J. Appl. Phys. 46, 276–279 (2007)CrossRef S.J. Kim et al., Low temperature sintering of ZnO-Doped 0.01Pb(Mg 1/2 W 1/2)O3−0.41Pb(Ni1/3 Nb 2/3)O3–0.35PbTiO3 –0.23PbZrO3 ceramics. Jpn. J. Appl. Phys. 46, 276–279 (2007)CrossRef
18.
go back to reference K. Wang, J.F. Li, Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 20, 1924–1929 (2010)CrossRef K. Wang, J.F. Li, Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 20, 1924–1929 (2010)CrossRef
19.
go back to reference M. Matsubara et al., Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn. J. Appl. Phys. 43, 7159–7163 (2004)CrossRef M. Matsubara et al., Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn. J. Appl. Phys. 43, 7159–7163 (2004)CrossRef
20.
go back to reference X. Pang et al., Effect of ZnO on the microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 23, 1083–1086 (2012) X. Pang et al., Effect of ZnO on the microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 23, 1083–1086 (2012)
21.
go back to reference D.F. Rushman, M.A. Strivens, The effective permittivity of two-phase systems. Proc. Phys. Soc. 59, 1011–1016 (1947)CrossRef D.F. Rushman, M.A. Strivens, The effective permittivity of two-phase systems. Proc. Phys. Soc. 59, 1011–1016 (1947)CrossRef
22.
go back to reference H. Yu et al., Grain size dependence of relaxor behavior in Ca Cu3 Ti4 O12 ceramics. Appl. Phys. Lett. 91, 1–4 (2007) H. Yu et al., Grain size dependence of relaxor behavior in Ca Cu3 Ti4 O12 ceramics. Appl. Phys. Lett. 91, 1–4 (2007)
23.
go back to reference C. Zhao et al., Grain size dependence of dielectric relaxation in cerium oxide as high-K layer. Nanoscale Res. Lett. 8, 1–10 (2013)CrossRef C. Zhao et al., Grain size dependence of dielectric relaxation in cerium oxide as high-K layer. Nanoscale Res. Lett. 8, 1–10 (2013)CrossRef
24.
go back to reference J.S. Kim, C.W. Ahn, S.Y. Lee, A. Ullah, I.W. Kim, Effects of LiNbO3 substitution on lead-free (K 0.5Na0.5)NbO3 ceramics: enhanced ferroelectric and electrical properties. Curr. Appl. Phys. 11(3), S149–S153 (2011)CrossRef J.S. Kim, C.W. Ahn, S.Y. Lee, A. Ullah, I.W. Kim, Effects of LiNbO3 substitution on lead-free (K 0.5Na0.5)NbO3 ceramics: enhanced ferroelectric and electrical properties. Curr. Appl. Phys. 11(3), S149–S153 (2011)CrossRef
Metadata
Title
Studies on the structural and piezoelectric properties of ZnO added on Na0.47K0.47Li0.06NbO3 ceramics prepared by ceramic method using high energy ball milling
Authors
Huidrom Surjalata Devi
Mamata Maisnam
Publication date
15-05-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01495-7

Other articles of this Issue 12/2019

Journal of Materials Science: Materials in Electronics 12/2019 Go to the issue