Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Study and Analysis of Underwater Wireless Power Transfer

Authors : Taofeek Orekan, Peng Zhang

Published in: Underwater Wireless Power Transfer

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A detailed study of the UWPT system is presented in this chapter. Since the properties of the coils also contribute to the overall efficiency of the system, we studied the self-inductance, capacitance, and radiation resistance of the coil underwater. The findings show the practicality of transferring power wirelessly in ocean environment which could help reduce the need for oversized batteries in distributed ocean systems and make a profound impact on the advancement of underwater devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference J.M. Miller, O.C. Onar, M. Chinthavali, Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 147–162 (2015)CrossRef J.M. Miller, O.C. Onar, M. Chinthavali, Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 147–162 (2015)CrossRef
4.
go back to reference S.Y.R. Hui, W. Zhong, C.K. Lee, A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29(9), 4500–4511 (2014)CrossRef S.Y.R. Hui, W. Zhong, C.K. Lee, A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29(9), 4500–4511 (2014)CrossRef
5.
go back to reference T.M. Hayslett, T. Orekan, P. Zhang, Underwater wireless power transfer for ocean system applications, in OCEANS 2016 MTS/IEEE Monterey (2016) T.M. Hayslett, T. Orekan, P. Zhang, Underwater wireless power transfer for ocean system applications, in OCEANS 2016 MTS/IEEE Monterey (2016)
6.
go back to reference R.S. McEwen, B.W. Hobson, L. McBride, Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng. 33(4), 550–562 (2008)CrossRef R.S. McEwen, B.W. Hobson, L. McBride, Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng. 33(4), 550–562 (2008)CrossRef
7.
go back to reference R. Stokey, B. Allen, T. Austin, Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network. IEEE J. Ocean. Eng. 26(4), 487–497 (2001)CrossRef R. Stokey, B. Allen, T. Austin, Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network. IEEE J. Ocean. Eng. 26(4), 487–497 (2001)CrossRef
8.
go back to reference K. Teo, E. An, P.J. Beaujean, A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Ocean. Eng. 37(2), 143–155 (2012)CrossRef K. Teo, E. An, P.J. Beaujean, A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Ocean. Eng. 37(2), 143–155 (2012)CrossRef
9.
go back to reference W. Zhong, S.Y.R. Hui, Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans. Power Electron. 30(7), 4025–4034 (2015)CrossRef W. Zhong, S.Y.R. Hui, Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans. Power Electron. 30(7), 4025–4034 (2015)CrossRef
10.
go back to reference A.P. Sample, D. Meyer, J.R. Smith, Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544–554 (2011)CrossRef A.P. Sample, D. Meyer, J.R. Smith, Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544–554 (2011)CrossRef
11.
go back to reference N.Y. Kim, K.Y. Kim, J. Choi, C.W. Kim, Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer. Electron. Lett. 48(8), 452–454 (2012)CrossRef N.Y. Kim, K.Y. Kim, J. Choi, C.W. Kim, Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer. Electron. Lett. 48(8), 452–454 (2012)CrossRef
12.
go back to reference B.H. Waters, A.P. Sample, P. Bonde, J.R. Smith, Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc. IEEE 100(1), 138–149 (2012)CrossRef B.H. Waters, A.P. Sample, P. Bonde, J.R. Smith, Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc. IEEE 100(1), 138–149 (2012)CrossRef
13.
go back to reference Z. Pantic, K. Lee, S.M. Lukic, Receivers for multifrequency wireless power transfer: design for minimum interference. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 234–241 (2015)CrossRef Z. Pantic, K. Lee, S.M. Lukic, Receivers for multifrequency wireless power transfer: design for minimum interference. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 234–241 (2015)CrossRef
14.
go back to reference J. Park, Y. Tak, Y. Kim, Y. Kim, S. Nam, Investigation of adaptive impedance matching methods for near-field wireless power transfer. IEEE Trans. Antennas Propag. 59(5), 1769–1773 (2011)CrossRef J. Park, Y. Tak, Y. Kim, Y. Kim, S. Nam, Investigation of adaptive impedance matching methods for near-field wireless power transfer. IEEE Trans. Antennas Propag. 59(5), 1769–1773 (2011)CrossRef
15.
go back to reference L. Huang, A.P. Hu, A.K. Swain, Y. Su, Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31(11), 7556–7563 (2016)CrossRef L. Huang, A.P. Hu, A.K. Swain, Y. Su, Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31(11), 7556–7563 (2016)CrossRef
16.
go back to reference T.C. Beh, T. Imura, M. Kato, Y. Hori, Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching, in IEEE International Symposium on Industrial Electronics, 7 July 2010 T.C. Beh, T. Imura, M. Kato, Y. Hori, Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching, in IEEE International Symposium on Industrial Electronics, 7 July 2010
17.
go back to reference F. Zhang, S.A. Hackworth, W. Fu, C. Li, Z. Mao, M. Sun, Relay effect of wireless power transfer using strongly coupled magnetic resonances. IEEE Trans. Magn. 47(5), 1478–1481 (2011)CrossRef F. Zhang, S.A. Hackworth, W. Fu, C. Li, Z. Mao, M. Sun, Relay effect of wireless power transfer using strongly coupled magnetic resonances. IEEE Trans. Magn. 47(5), 1478–1481 (2011)CrossRef
18.
go back to reference D. Ahn, S. Hong, A study on magnetic field repeater in wireless power transfer. IEEE Trans. Ind. Electron. 60(1), 360–371, (2013)CrossRef D. Ahn, S. Hong, A study on magnetic field repeater in wireless power transfer. IEEE Trans. Ind. Electron. 60(1), 360–371, (2013)CrossRef
19.
go back to reference M.J. Chabalko, J. Besnoff, D.S. Ricketts, Magnetic field enhancement in wireless power with metamaterials and magnetic resonant couplers. IEEE Antennas Wirel. Propag. Lett. 15, 452–455 (2015)CrossRef M.J. Chabalko, J. Besnoff, D.S. Ricketts, Magnetic field enhancement in wireless power with metamaterials and magnetic resonant couplers. IEEE Antennas Wirel. Propag. Lett. 15, 452–455 (2015)CrossRef
20.
go back to reference E.S. Rodríguez, A.K. RamRakhyani, D. Schurig, Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement. IEEE Trans. Microw. Theory Tech. 64(5), 1644–1654 (2016)CrossRef E.S. Rodríguez, A.K. RamRakhyani, D. Schurig, Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement. IEEE Trans. Microw. Theory Tech. 64(5), 1644–1654 (2016)CrossRef
21.
go back to reference T. Orekan, P. Zhang, C. Shih, Analysis, design and maximum power efficiency tracking for undersea wireless power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 843–854 (2017)CrossRef T. Orekan, P. Zhang, C. Shih, Analysis, design and maximum power efficiency tracking for undersea wireless power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 843–854 (2017)CrossRef
22.
go back to reference J. Huh, S.W. Lee, W.Y. Lee, G.H. Cho, C.T. Rim, Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans. Power Electron. 26(12), 3666–3679 (2011)CrossRef J. Huh, S.W. Lee, W.Y. Lee, G.H. Cho, C.T. Rim, Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans. Power Electron. 26(12), 3666–3679 (2011)CrossRef
23.
go back to reference C. Fang, J. Song, L. Lin, Y. Wang, Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application, in 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW) (2017), pp. 255–259 C. Fang, J. Song, L. Lin, Y. Wang, Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application, in 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW) (2017), pp. 255–259
24.
go back to reference S. Wang, J. Chen, Z. Hu, C. Rong, M. Liu, Optimisation design for series-series dynamic WPT system maintaining stable transfer power. IET Power Electron. 10(9), 987–995 (2017)CrossRef S. Wang, J. Chen, Z. Hu, C. Rong, M. Liu, Optimisation design for series-series dynamic WPT system maintaining stable transfer power. IET Power Electron. 10(9), 987–995 (2017)CrossRef
25.
go back to reference Y. Wang, Y. Yao, X. Liu, D. Xu, L. Cai, An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33(3), 2007–2025 (2018)CrossRef Y. Wang, Y. Yao, X. Liu, D. Xu, L. Cai, An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33(3), 2007–2025 (2018)CrossRef
26.
go back to reference M. Ishihara, K. Umetani, H. Umegami, E.Hiraki, M. Yamamoto, Quasi-duality between SS and SP topologies of basic electric-field coupling wireless power transfer system. Electron. Lett. 52(25), 2057–2059 (2016)CrossRef M. Ishihara, K. Umetani, H. Umegami, E.Hiraki, M. Yamamoto, Quasi-duality between SS and SP topologies of basic electric-field coupling wireless power transfer system. Electron. Lett. 52(25), 2057–2059 (2016)CrossRef
27.
go back to reference T. Campi, S. Cruciani, F. Maradei, M. Feliziani, Near-field reduction in a wireless power transfer system using LCC compensation. IEEE Trans. Electromagn. Compat. 59(2), 686–694 (2017)CrossRef T. Campi, S. Cruciani, F. Maradei, M. Feliziani, Near-field reduction in a wireless power transfer system using LCC compensation. IEEE Trans. Electromagn. Compat. 59(2), 686–694 (2017)CrossRef
28.
go back to reference K. Iizuka, R. King, C. Harrison, Self- and mutual admittances of two identical circular loop antennas in a conducting medium and in air. IEEE Trans. Antennas Propag. 14(4), 440–450 (1966)CrossRef K. Iizuka, R. King, C. Harrison, Self- and mutual admittances of two identical circular loop antennas in a conducting medium and in air. IEEE Trans. Antennas Propag. 14(4), 440–450 (1966)CrossRef
29.
go back to reference A. Jenkins, V. Bana, G. Anderson, Impedance of a coil in seawater, in IEEE Antennas and Propagation Society International Symposium (APSURSI) (2014) A. Jenkins, V. Bana, G. Anderson, Impedance of a coil in seawater, in IEEE Antennas and Propagation Society International Symposium (APSURSI) (2014)
30.
go back to reference M.B. Kraichman, Impedance of a circular loop antenna in a infinite conducting medium. J. Res. Natl. Bur. Stand. Radio Propag. 66D(4), 499–503 (1962)CrossRef M.B. Kraichman, Impedance of a circular loop antenna in a infinite conducting medium. J. Res. Natl. Bur. Stand. Radio Propag. 66D(4), 499–503 (1962)CrossRef
31.
go back to reference J.R. Wait, Insulated loop antenna immersed in a conducting medium. J. Res. Natl. Bur. Stand. 59(2), 133–137 (1957)CrossRef J.R. Wait, Insulated loop antenna immersed in a conducting medium. J. Res. Natl. Bur. Stand. 59(2), 133–137 (1957)CrossRef
32.
go back to reference S. Babic, F. Sirois, C. Akyel, C. Girardi, Mutual inductance calculation between circular filaments arbitrarily positioned in space: alternative to grover’s formula. IEEE Trans. Magn. 46(9), 3591–3600 (2010)CrossRef S. Babic, F. Sirois, C. Akyel, C. Girardi, Mutual inductance calculation between circular filaments arbitrarily positioned in space: alternative to grover’s formula. IEEE Trans. Magn. 46(9), 3591–3600 (2010)CrossRef
33.
go back to reference C. Zhang, W. Zhong, X. Liu, S.Y.R. Hui, A fast method for generating time-varying magnetic field patterns of mid-range wireless power transfer systems. IEEE Trans. Power Electron. 30(3), 1513–1520 (2015)CrossRef C. Zhang, W. Zhong, X. Liu, S.Y.R. Hui, A fast method for generating time-varying magnetic field patterns of mid-range wireless power transfer systems. IEEE Trans. Power Electron. 30(3), 1513–1520 (2015)CrossRef
34.
go back to reference P. Hadadtehrani, P. Kamalinejad, R. Molavi, S. Mirabbasi, On the use of conical helix inductors in wireless power transfer systems, in IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016) P. Hadadtehrani, P. Kamalinejad, R. Molavi, S. Mirabbasi, On the use of conical helix inductors in wireless power transfer systems, in IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016)
35.
go back to reference X. Shi, C. Qi, M. Qu, S. Ye, G. Wang, L. Sun, Z. Yu, Effects of coil shapes on wireless power transfer via magnetic resonance coupling. J. Electromagn. Waves Appl. 28(11), 1316–1324 (2014)CrossRef X. Shi, C. Qi, M. Qu, S. Ye, G. Wang, L. Sun, Z. Yu, Effects of coil shapes on wireless power transfer via magnetic resonance coupling. J. Electromagn. Waves Appl. 28(11), 1316–1324 (2014)CrossRef
Metadata
Title
Study and Analysis of Underwater Wireless Power Transfer
Authors
Taofeek Orekan
Peng Zhang
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-02562-5_3