Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2021

01-06-2021

Study of an Intraply/Yarn Composite Submitted to Low-Velocity Impact in the Presence of High Void Content

Authors: Ricardo Alex Dantas da Cunha, Rayane Dantas da Cunha, Wanderley Ferreira de Amorim Junior, Avelino Manuel da Silva Dias, Raimundo Carlos Silverio Freire Júnior

Published in: Journal of Materials Engineering and Performance | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this article was to assess low-velocity impact resistance in polymer composites in the presence of voids, reporting residual mechanical and impact properties, comparing the results with other literature materials and determining the extent to which voids influenced the final result. Thus, three composites with 11 layers were developed, two hybrids (IAYKG) with 3 layers of bidirectional hybrid kevlar/glass strands (intraply/yarn) placed in the middle and outer layers of the laminate, and 8 layers bidirectional fabric with different sized glass fibers, which influenced their void percentage (9 and 4%, respectively), in addition to a non-hybrid composite containing only glass fiber (WG). The tests were carried out using four impact energies (46, 62, 76 and 101 J) until total perforation. As a result, the hybrid yarn improved impact resistance and increased void content (9%), thereby relieving stresses and decreasing damage propagation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Mars, E. Chebbi, M. Wali and F. Dammak, Numerical and Experimental Investigations of Low Velocity Impact on Glass fiber-Reinforced Polyamide, Compos. B Eng., 2018, 146, p 116–123.CrossRef J. Mars, E. Chebbi, M. Wali and F. Dammak, Numerical and Experimental Investigations of Low Velocity Impact on Glass fiber-Reinforced Polyamide, Compos. B Eng., 2018, 146, p 116–123.CrossRef
2.
go back to reference A. Gliszczynski, T. Kubiak, P. Rozylo, P. Jakubczak and J. Bieniaś, The Response of Laminated Composite Plates and Profiles Under Low-velocity Impact Load, Compos. Struct., 2019, 207, p 1–12.CrossRef A. Gliszczynski, T. Kubiak, P. Rozylo, P. Jakubczak and J. Bieniaś, The Response of Laminated Composite Plates and Profiles Under Low-velocity Impact Load, Compos. Struct., 2019, 207, p 1–12.CrossRef
3.
go back to reference L. Jing, X. Su, D. Chen, F. Yang and L. Zhao, Experimental and Numerical Study of Sandwich Beams with Layered-Gradient Foam Cores Under Low-Velocity Impact, Thin-Walled Struct., 2019, 135, p 227–244.CrossRef L. Jing, X. Su, D. Chen, F. Yang and L. Zhao, Experimental and Numerical Study of Sandwich Beams with Layered-Gradient Foam Cores Under Low-Velocity Impact, Thin-Walled Struct., 2019, 135, p 227–244.CrossRef
4.
go back to reference J. Krollmann, T. Schreyer, M. Veidt and K. Drechsler, Impact and Post-impact Properties of Hybrid-matrix Laminates Based on Carbon Fiber-reinforced Epoxy and Elastomer Subjected to Low-velocity Impacts, Compos. Struct., 2019, 208, p 535–545.CrossRef J. Krollmann, T. Schreyer, M. Veidt and K. Drechsler, Impact and Post-impact Properties of Hybrid-matrix Laminates Based on Carbon Fiber-reinforced Epoxy and Elastomer Subjected to Low-velocity Impacts, Compos. Struct., 2019, 208, p 535–545.CrossRef
5.
go back to reference W. He, L. Yao, X. Meng, G. Sun, D. Xie and J. Liu, Effect of Structural Parameters on Low-velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with CFRP Face Sheets, Thin-Walled Struct., 2019, 137, p 411–432.CrossRef W. He, L. Yao, X. Meng, G. Sun, D. Xie and J. Liu, Effect of Structural Parameters on Low-velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with CFRP Face Sheets, Thin-Walled Struct., 2019, 137, p 411–432.CrossRef
6.
go back to reference M.Z. Sadeghi, P. Nienheysen, S. Arslan, A. Dafnis, B. Silva Marció, R.H. Schmitt and K.U. Schröder, Damage Detection by Double-sided Ultrasonic Assessment in Low-velocity Impacted CFRP Plates, Compos. Struct., 2019, 208, p 646–655.CrossRef M.Z. Sadeghi, P. Nienheysen, S. Arslan, A. Dafnis, B. Silva Marció, R.H. Schmitt and K.U. Schröder, Damage Detection by Double-sided Ultrasonic Assessment in Low-velocity Impacted CFRP Plates, Compos. Struct., 2019, 208, p 646–655.CrossRef
7.
go back to reference M. Salvetti, A. Gilioli, C. Sbarufatti, A. Manes and M. Giglio, Analytical Model of the Dynamic Behaviour of CFRP Plates Subjected to Low-velocity Impacts, Compos. B Eng., 2018, 142, p 47–55.CrossRef M. Salvetti, A. Gilioli, C. Sbarufatti, A. Manes and M. Giglio, Analytical Model of the Dynamic Behaviour of CFRP Plates Subjected to Low-velocity Impacts, Compos. B Eng., 2018, 142, p 47–55.CrossRef
8.
go back to reference M. Mehdikhani, L. Gorbatikh, I. Verpoest and S.V. Lomov, Voids in Fiber-reinforced Polymer Composites: A Review on their Formation, Characteristics, and Effects on Mechanical Performance, J. Compos. Mater., 2019, 53(12), p 1579–1669.CrossRef M. Mehdikhani, L. Gorbatikh, I. Verpoest and S.V. Lomov, Voids in Fiber-reinforced Polymer Composites: A Review on their Formation, Characteristics, and Effects on Mechanical Performance, J. Compos. Mater., 2019, 53(12), p 1579–1669.CrossRef
9.
go back to reference W.T. Kern, W. Kim, A. Argento, E.C. Lee and D.F. Mielewski, Finite Element Analysis and Microscopy of Natural Fiber Composites Containing Microcellular Voids, Mater. Design, 2016, 106, p 285–294.CrossRef W.T. Kern, W. Kim, A. Argento, E.C. Lee and D.F. Mielewski, Finite Element Analysis and Microscopy of Natural Fiber Composites Containing Microcellular Voids, Mater. Design, 2016, 106, p 285–294.CrossRef
10.
go back to reference M. Mehdikhani, E. Steensels, A. Standaert, K.A.M. Vallons, L. Gorbatikh and S.V. Lomov, Multi-scale Digital Image Correlation for Detection and Quantification of Matrix Cracks in Carbon Fiber Composite Laminates in the Absence and Presence of Voids Controlled by the Cure Cycle, Compos. Part B Eng., 2018, 154, p 138–147.CrossRef M. Mehdikhani, E. Steensels, A. Standaert, K.A.M. Vallons, L. Gorbatikh and S.V. Lomov, Multi-scale Digital Image Correlation for Detection and Quantification of Matrix Cracks in Carbon Fiber Composite Laminates in the Absence and Presence of Voids Controlled by the Cure Cycle, Compos. Part B Eng., 2018, 154, p 138–147.CrossRef
11.
go back to reference L. Di Landro, A. Montalto, P. Bettini, S. Guerra, F. Montagnoli and M. Rigamonti, Detection of Voids in Carbon/epoxy Laminates and their Influence on Mechanical Properties, Polym. Polym. Compos., 2017, 25(5), p 371–380. L. Di Landro, A. Montalto, P. Bettini, S. Guerra, F. Montagnoli and M. Rigamonti, Detection of Voids in Carbon/epoxy Laminates and their Influence on Mechanical Properties, Polym. Polym. Compos., 2017, 25(5), p 371–380.
12.
go back to reference S. Aratama, R. Hashizume, K. Takenaka, K. Koga, Y. Tsumura, T. Miyake, M. Nishikawa and M. Hojo, Microscopic Observation of Voids and Transverse Crack Initiation in CFRP Laminates, Adv. Compos. Mater, 2016, 25, p 115–130.CrossRef S. Aratama, R. Hashizume, K. Takenaka, K. Koga, Y. Tsumura, T. Miyake, M. Nishikawa and M. Hojo, Microscopic Observation of Voids and Transverse Crack Initiation in CFRP Laminates, Adv. Compos. Mater, 2016, 25, p 115–130.CrossRef
13.
go back to reference K. Hamamousse, Z. Sereir, R. Benzidane, F. Gehring, M. Gomina and C. Poilâne, Experimental and Numerical Studies on the Low-velocity Impact Response of Orthogrid Epoxy Panels Reinforced with Short Plant Fibers, Compos. Struct., 2019, 211, p 469–480.CrossRef K. Hamamousse, Z. Sereir, R. Benzidane, F. Gehring, M. Gomina and C. Poilâne, Experimental and Numerical Studies on the Low-velocity Impact Response of Orthogrid Epoxy Panels Reinforced with Short Plant Fibers, Compos. Struct., 2019, 211, p 469–480.CrossRef
14.
go back to reference X.C. Sun, L.F. Kawashita, A.S. Kaddour, M.J. Hiley and S.R. Hallett, Comparison of Low Velocity Impact Modelling Techniques for Thermoplastic and Thermoset Polymer Composites, Compos. Struct., 2018, 203, p 659–671.CrossRef X.C. Sun, L.F. Kawashita, A.S. Kaddour, M.J. Hiley and S.R. Hallett, Comparison of Low Velocity Impact Modelling Techniques for Thermoplastic and Thermoset Polymer Composites, Compos. Struct., 2018, 203, p 659–671.CrossRef
15.
go back to reference M. Amirkhosravi, M. Pishvar and M.C. Altan, Improving laminate quality in Wet Lay-up/vacuum Bag Processes by Magnet Assisted Composite Manufacturing (MACM), Compos. A Appl. Sci. Manuf., 2017, 98, p 227–237.CrossRef M. Amirkhosravi, M. Pishvar and M.C. Altan, Improving laminate quality in Wet Lay-up/vacuum Bag Processes by Magnet Assisted Composite Manufacturing (MACM), Compos. A Appl. Sci. Manuf., 2017, 98, p 227–237.CrossRef
16.
go back to reference M. Pishvar, M. Amirkhosravi and M.C. Altan, Magnet Assisted Composite Manufacturing: A Novel Fabrication Technique for High Quality Composite Laminates, Polym. Compos., 2019, 40(1), p 159–169.CrossRef M. Pishvar, M. Amirkhosravi and M.C. Altan, Magnet Assisted Composite Manufacturing: A Novel Fabrication Technique for High Quality Composite Laminates, Polym. Compos., 2019, 40(1), p 159–169.CrossRef
17.
go back to reference A.K. Bandaru, S. Patel, S. Ahmad and N. Bhatnagar, An Experimental and Numerical Investigation on the Low Velocity Impact Response of Thermoplastic Hybrid Composites, J. Compos. Mater., 2018, 52(7), p 877–889.CrossRef A.K. Bandaru, S. Patel, S. Ahmad and N. Bhatnagar, An Experimental and Numerical Investigation on the Low Velocity Impact Response of Thermoplastic Hybrid Composites, J. Compos. Mater., 2018, 52(7), p 877–889.CrossRef
18.
go back to reference J.J. Andrew, S.M. Srinivasan and A. Arockiarajan, Influence of Patch Lay-up Configuration and Hybridization on Low velocity Impact and Post-impact Tensile Response of Repaired Glass Fiber Reinforced Plastic Composites, J. Compos. Mater., 2019, 53(1), p 3–17.CrossRef J.J. Andrew, S.M. Srinivasan and A. Arockiarajan, Influence of Patch Lay-up Configuration and Hybridization on Low velocity Impact and Post-impact Tensile Response of Repaired Glass Fiber Reinforced Plastic Composites, J. Compos. Mater., 2019, 53(1), p 3–17.CrossRef
19.
go back to reference S. Ying, T. Mengyun, R. Zhijun, S. Baohui and C. Li, An Experimental Investigation on the Low-velocity Impact Response of Carbon–aramid/epoxy Hybrid Composite Laminates, J. Reinf. Plast. Compos., 2017, 36(6), p 422–434.CrossRef S. Ying, T. Mengyun, R. Zhijun, S. Baohui and C. Li, An Experimental Investigation on the Low-velocity Impact Response of Carbon–aramid/epoxy Hybrid Composite Laminates, J. Reinf. Plast. Compos., 2017, 36(6), p 422–434.CrossRef
20.
go back to reference J. Kakakasery, V. Arumugam, K. Abdul Rauf, D. Bull, A.R. Chambers, C. Scarponi and C. Santulli, Cure Cycle Effect on Impact Resistance Under Elevated Temperatures in Carbon Prepreg Laminates Investigated Using Acoustic Emission, Compos. B Eng., 2015, 75, p 298–306.CrossRef J. Kakakasery, V. Arumugam, K. Abdul Rauf, D. Bull, A.R. Chambers, C. Scarponi and C. Santulli, Cure Cycle Effect on Impact Resistance Under Elevated Temperatures in Carbon Prepreg Laminates Investigated Using Acoustic Emission, Compos. B Eng., 2015, 75, p 298–306.CrossRef
21.
go back to reference B. Arthurs, D.J. Bulla, V. Arumugam, A.R. Chambers and C. Santulli, Porosity Effect on Residual Flexural Strength Following Low Energy Impact of Carbon Fibre Composites, Polym. Polym. Compos., 2015, 23(4), p 205–212. B. Arthurs, D.J. Bulla, V. Arumugam, A.R. Chambers and C. Santulli, Porosity Effect on Residual Flexural Strength Following Low Energy Impact of Carbon Fibre Composites, Polym. Polym. Compos., 2015, 23(4), p 205–212.
22.
go back to reference American Society for Testing and Materials. ASTM D792 (2013). Specific Gravity and Density of Plastics by Displacement American Society for Testing and Materials. ASTM D792 (2013). Specific Gravity and Density of Plastics by Displacement
23.
go back to reference American Society for Testing and Materials. ASTM D 3171 (2015), Standard Test Methods for Constituent Content of Composite Materials American Society for Testing and Materials. ASTM D 3171 (2015), Standard Test Methods for Constituent Content of Composite Materials
24.
go back to reference R.D. Cunha, R.A.D. Cunha, R.C.S. Freire Junior and W.F. Amorim Junior, Study of the Resistance Variation in Intraply/yarn kevlar/glass Composite After Low-velocity Impact, J. Mater. Eng. Perform., 2020, 1, p 1–10. R.D. Cunha, R.A.D. Cunha, R.C.S. Freire Junior and W.F. Amorim Junior, Study of the Resistance Variation in Intraply/yarn kevlar/glass Composite After Low-velocity Impact, J. Mater. Eng. Perform., 2020, 1, p 1–10.
25.
go back to reference AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 7136 (2015). Standard Test Method for Measuring the Damage Resistance of a Fiber–reinforced Polymer Matrix Composite to a Drop-weight Impact Event AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 7136 (2015). Standard Test Method for Measuring the Damage Resistance of a Fiber–reinforced Polymer Matrix Composite to a Drop-weight Impact Event
26.
go back to reference American society for testing and materials. ASTM D790 (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials American society for testing and materials. ASTM D790 (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials
27.
go back to reference C.M.D. Azevedo, R.D. Cunha, R.C.S. Freire Junior and W.F. Amorim Junior, Development of a Mathematical Model to Analyze Residual Strength of Composites After Low-velocity Impact, J. Strain Anal. Eng. Design, 2018, 53(8), p 738–745.CrossRef C.M.D. Azevedo, R.D. Cunha, R.C.S. Freire Junior and W.F. Amorim Junior, Development of a Mathematical Model to Analyze Residual Strength of Composites After Low-velocity Impact, J. Strain Anal. Eng. Design, 2018, 53(8), p 738–745.CrossRef
28.
go back to reference Santos JKD, Cunha RD, Amorimjunior WF, Felipe RCTS, Neto JLB, Freirejúnior RCS. The variation in low speed impact strength on glass fiber/Kevlar composite hybrids. J. Compos. Mater., pp. 1–11, (2020) Santos JKD, Cunha RD, Amorimjunior WF, Felipe RCTS, Neto JLB, Freirejúnior RCS. The variation in low speed impact strength on glass fiber/Kevlar composite hybrids. J. Compos. Mater., pp. 1–11, (2020)
29.
go back to reference J.S. Lin, Effect of Surface Modification by Bromination and Metalation on Kevlar Fibre-epoxy Adhesion, Euro. Polym. J., 2002, 38(1), p 79–86.CrossRef J.S. Lin, Effect of Surface Modification by Bromination and Metalation on Kevlar Fibre-epoxy Adhesion, Euro. Polym. J., 2002, 38(1), p 79–86.CrossRef
30.
go back to reference J. Nasser, J. Lin, K. Steinke and H.A. Sodano, Enhanced Interfacial Strength of Aramid Fiber Reinforced Composites Through Adsorbed Aramid Nanofiber Coatings, Compos. Sci. Technol., 2019, 174, p 125–133.CrossRef J. Nasser, J. Lin, K. Steinke and H.A. Sodano, Enhanced Interfacial Strength of Aramid Fiber Reinforced Composites Through Adsorbed Aramid Nanofiber Coatings, Compos. Sci. Technol., 2019, 174, p 125–133.CrossRef
31.
go back to reference U.K. Vaidya, Impact response of laminated and sandwich composites, Impact Engineering of Composite Structures. S. Abrate Ed., Springer, Vienna, 2011, p 97–191CrossRef U.K. Vaidya, Impact response of laminated and sandwich composites, Impact Engineering of Composite Structures. S. Abrate Ed., Springer, Vienna, 2011, p 97–191CrossRef
32.
go back to reference T.H. Mahdi, M.E. Islam, M.V. Hosur and S. Jeelani, Low-velocity Impact Performance of Carbon Fiber-Reinforced Plastics Modified with Carbon Nanotube, Nanoclay and Hybrid Nanoparticles, J. Reinf.Plast. Compos., 2017, 36(9), p 696–713.CrossRef T.H. Mahdi, M.E. Islam, M.V. Hosur and S. Jeelani, Low-velocity Impact Performance of Carbon Fiber-Reinforced Plastics Modified with Carbon Nanotube, Nanoclay and Hybrid Nanoparticles, J. Reinf.Plast. Compos., 2017, 36(9), p 696–713.CrossRef
33.
go back to reference K.K. Singh, N.K. Singh and R. Jha, Analysis of Symmetric and Asymmetric Glass Fiber Reinforced Plastic Laminates Subjected to Low-velocity Impact, J. Compos. Mater., 2016, 50(14), p 1853–1863.CrossRef K.K. Singh, N.K. Singh and R. Jha, Analysis of Symmetric and Asymmetric Glass Fiber Reinforced Plastic Laminates Subjected to Low-velocity Impact, J. Compos. Mater., 2016, 50(14), p 1853–1863.CrossRef
Metadata
Title
Study of an Intraply/Yarn Composite Submitted to Low-Velocity Impact in the Presence of High Void Content
Authors
Ricardo Alex Dantas da Cunha
Rayane Dantas da Cunha
Wanderley Ferreira de Amorim Junior
Avelino Manuel da Silva Dias
Raimundo Carlos Silverio Freire Júnior
Publication date
01-06-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05923-w

Other articles of this Issue 10/2021

Journal of Materials Engineering and Performance 10/2021 Go to the issue

Premium Partners