Skip to main content
Top
Published in: Metallurgist 9-10/2021

26-01-2021

Study of Conditions for Improving Chemical and Structural Homogeneity of Ferritic Class Hot-Rolled Steels

Authors: A. I. Zaitsev, I. G. Rodionova, A. V. Koldaev, N. A. Arutyunyan, S. F. Dunaev

Published in: Metallurgist | Issue 9-10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Redistribution of carbon and other elements, and formation of the structure, composition, and properties of low-carbon Nb, Nb–Ti, Nb–V, Nb–V–Mo and Ti–Mo microalloyed steels during hot rolling is studied using metal of five laboratory melts. It is established that by selecting the temperature for the beginning of rolling in the finishing group of stands according to steel composition (microalloying system) it is possible to achieve a significant improvement in the homogeneity of the composition, structure, and set of rolled product properties. Therefore, it is demonstrated by experiment that chemical and structural heterogeneity of metal formed in the billet casting stage may be largely eliminated during hot rolling on the basis of controlling carbide (carbonitride) precipitate formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. I. Zaitsev, “Prospective directions for development of metallurgy and materials science of steel,” Pure and Applied Chemistry, 89, No. 10, 1553–1565 (2017).CrossRef A. I. Zaitsev, “Prospective directions for development of metallurgy and materials science of steel,” Pure and Applied Chemistry, 89, No. 10, 1553–1565 (2017).CrossRef
2.
go back to reference C. Lesch, N. Kwiaton, and F. B. Klose, “Advanced high strength steels (AHSS) for automotive applications — tailored properties by smart microstructural adjustments,” Steel Research Int., 88, 1700210 (2017).CrossRef C. Lesch, N. Kwiaton, and F. B. Klose, “Advanced high strength steels (AHSS) for automotive applications — tailored properties by smart microstructural adjustments,” Steel Research Int., 88, 1700210 (2017).CrossRef
3.
go back to reference N. Fonstein, Advanced High Strength Sheet Steels, Springer Int. Publishing, Switzerland (2015).CrossRef N. Fonstein, Advanced High Strength Sheet Steels, Springer Int. Publishing, Switzerland (2015).CrossRef
4.
go back to reference Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda, “Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides,” ISIJ Int., 44, 1945–1951 (2004).CrossRef Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda, “Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides,” ISIJ Int., 44, 1945–1951 (2004).CrossRef
5.
go back to reference K. Seto, Y. Funakawa, and S. Kaneko, “Hot rolling high strength steels for suspension and chassis parts “NANOHITEN” and “BTH steels” JFE Technical Report, No. 10, 19–25 (2007). K. Seto, Y. Funakawa, and S. Kaneko, “Hot rolling high strength steels for suspension and chassis parts “NANOHITEN” and “BTH steels” JFE Technical Report, No. 10, 19–25 (2007).
6.
go back to reference X. Mao, X. Huo, X. Sun, and Y. Chai, “Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production,” J. of Mater. Proc. Techn., 210, 1660–1666 (2010).CrossRef X. Mao, X. Huo, X. Sun, and Y. Chai, “Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production,” J. of Mater. Proc. Techn., 210, 1660–1666 (2010).CrossRef
7.
go back to reference A. V. Koldaev, A. I. Zaitsev, I. A. Krasnyanskaya, and D. L. D’yakonov, “Study of the effect of composition and thermal deformation treatment parameters on the properties of austenitic steels microalloyed with titanium and molybdenum. Part 2. Phase precipitate characteristics,” Metallurg, No. 6, 60–70 (2019). A. V. Koldaev, A. I. Zaitsev, I. A. Krasnyanskaya, and D. L. D’yakonov, “Study of the effect of composition and thermal deformation treatment parameters on the properties of austenitic steels microalloyed with titanium and molybdenum. Part 2. Phase precipitate characteristics,” Metallurg, No. 6, 60–70 (2019).
8.
go back to reference A. V. Koldaev, A. I. Zaitsev, I. A. Krasnyanskaya, and D. L. D’yakonov, “Study of the effect of composition and thermal deformation treatment parameters on the properties of austenitic steels microalloyed with titanium and molybdenum. Part 1. Microstructure characteristics,” Metallurg, No. 5, 55–61 (2019). A. V. Koldaev, A. I. Zaitsev, I. A. Krasnyanskaya, and D. L. D’yakonov, “Study of the effect of composition and thermal deformation treatment parameters on the properties of austenitic steels microalloyed with titanium and molybdenum. Part 1. Microstructure characteristics,” Metallurg, No. 5, 55–61 (2019).
9.
go back to reference Y. Funakawa and K. Seto, “Coarsening behavior of nanometer sized carbides in hot-rolled high strength sheet steel,” Mater. Sci. Forum, 539–543, 4813–4818 (2007).CrossRef Y. Funakawa and K. Seto, “Coarsening behavior of nanometer sized carbides in hot-rolled high strength sheet steel,” Mater. Sci. Forum, 539–543, 4813–4818 (2007).CrossRef
10.
go back to reference Z. Jia, R. D. K. Misra, R. O’Malley, and S. J. Jansto, “Fine-scale precipitation and mechanical properties of thin slab processed titanium–niobium bearing high strength steels,” Mater. Sci. and Eng. A, 528, No. 22, 7077–7083. Z. Jia, R. D. K. Misra, R. O’Malley, and S. J. Jansto, “Fine-scale precipitation and mechanical properties of thin slab processed titanium–niobium bearing high strength steels,” Mater. Sci. and Eng. A, 528, No. 22, 7077–7083.
11.
go back to reference F. Z. Bu, X. M. Wang, S. W. Yang, C. J. Shang, and R. D. K. Misra, “Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels,” Mater. Sci. and Eng. A, 620, 22–29 (2014).CrossRef F. Z. Bu, X. M. Wang, S. W. Yang, C. J. Shang, and R. D. K. Misra, “Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels,” Mater. Sci. and Eng. A, 620, 22–29 (2014).CrossRef
12.
go back to reference C. Y. Chen, H. W. Yen, F. H. Kao, W. C. Li, C. Y. Huang, J. R. Yang, and S. H. Wang, “Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides,” Mater. Sci. and Eng. A, 499, 162–166 (2009).CrossRef C. Y. Chen, H. W. Yen, F. H. Kao, W. C. Li, C. Y. Huang, J. R. Yang, and S. H. Wang, “Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides,” Mater. Sci. and Eng. A, 499, 162–166 (2009).CrossRef
13.
go back to reference A. I. Zaitsev, A. V. Koldaev, N. A. Arutyunyan, B. M. Mogutnov, and S. F. Dunaev, “New generation of economically alloyed ferritic steels with a unique set of properties that are difficult to combine,” Probl. Chern. Met. Mater., No. 2, 77–86 (2019). A. I. Zaitsev, A. V. Koldaev, N. A. Arutyunyan, B. M. Mogutnov, and S. F. Dunaev, “New generation of economically alloyed ferritic steels with a unique set of properties that are difficult to combine,” Probl. Chern. Met. Mater., No. 2, 77–86 (2019).
14.
go back to reference K. Frisk and U. Borggren, “Precipitation in microalloyed steel by model alloy experiment and thermodynamic calculation,” Metall. and Mater. Trans A, 48A, 4806–4817 (2016).CrossRef K. Frisk and U. Borggren, “Precipitation in microalloyed steel by model alloy experiment and thermodynamic calculation,” Metall. and Mater. Trans A, 48A, 4806–4817 (2016).CrossRef
15.
go back to reference G. Larzabal, N. Isasti, J. M. Rodriguez-Ibabe, and P. Uranga, “Evaluating strengthening and impact toughness mechanisms for ferritic and bainitic microstructures in Nb, Nb–Mo and Ti–Mo microalloyed steels,” Metals, 7, 65 (2017).CrossRef G. Larzabal, N. Isasti, J. M. Rodriguez-Ibabe, and P. Uranga, “Evaluating strengthening and impact toughness mechanisms for ferritic and bainitic microstructures in Nb, Nb–Mo and Ti–Mo microalloyed steels,” Metals, 7, 65 (2017).CrossRef
16.
go back to reference N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzakie, and T. Furuhara, “Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels,” Acta Materialia, 83, 383–396 (2015).CrossRef N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzakie, and T. Furuhara, “Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels,” Acta Materialia, 83, 383–396 (2015).CrossRef
17.
go back to reference X. Deng, T. Fu, Z. Wang, G. Liu, G. Wang, and R. D. K. Misra, “Extending the boundaries of mechanical properties of Ti–Nb low carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation,” Met. Mater. Int., 23, No. 1, 175–183 (2017).CrossRef X. Deng, T. Fu, Z. Wang, G. Liu, G. Wang, and R. D. K. Misra, “Extending the boundaries of mechanical properties of Ti–Nb low carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation,” Met. Mater. Int., 23, No. 1, 175–183 (2017).CrossRef
18.
go back to reference A. Rijkenberg, A. Blowey, P. Bellina, and C. Wooffindin, “Advanced high stretch-flange formability steels for chassis & suspension applications,” SCT2014 (4th Int. Conf. on Steels in Cars and Trucks), 15–19 June 2014, Braunschweig, Germany. A. Rijkenberg, A. Blowey, P. Bellina, and C. Wooffindin, “Advanced high stretch-flange formability steels for chassis & suspension applications,” SCT2014 (4th Int. Conf. on Steels in Cars and Trucks), 15–19 June 2014, Braunschweig, Germany.
19.
go back to reference A. I., Zaitsev, A. V. Koldaev, N. A. Karamysheva, and I. G. Rodionova, “Mechanisms for improving chemical and structural homogeneity of hot-rolled product for objects prepared by hot stamping,” Metallurgist, 59, No. 11, 1086–1095 (2016).CrossRef A. I., Zaitsev, A. V. Koldaev, N. A. Karamysheva, and I. G. Rodionova, “Mechanisms for improving chemical and structural homogeneity of hot-rolled product for objects prepared by hot stamping,” Metallurgist, 59, No. 11, 1086–1095 (2016).CrossRef
20.
go back to reference A. I. Zaitsev, K. L. Kosyrev, and I. G. Rodionova, “Contemporary trends in the development of metallurgical technology for achieving a good set of steel service properties and quality indices,” Probl. Chern. Met. Mater., No. 3, 5–13 (2012). A. I. Zaitsev, K. L. Kosyrev, and I. G. Rodionova, “Contemporary trends in the development of metallurgical technology for achieving a good set of steel service properties and quality indices,” Probl. Chern. Met. Mater., No. 3, 5–13 (2012).
21.
go back to reference A. I. Zaitsev, N. G. Shaposhnikov, I. G. Rodionova, and A. A. Pavlov, “Thermodynamic development of austenite-martensite class corrosion-resistant steels intended for a bimetal cladding layer,” Metallurgist, 59, 1195–1120 (2015). A. I. Zaitsev, N. G. Shaposhnikov, I. G. Rodionova, and A. A. Pavlov, “Thermodynamic development of austenite-martensite class corrosion-resistant steels intended for a bimetal cladding layer,” Metallurgist, 59, 1195–1120 (2015).
22.
go back to reference N. G. Shaposhnikov, B. M. Mogutnov, S. M. Polonskaya, A. P. Kolesnichenko, and P. B. Belyavskii, “Thermodynamic modeling as a tool for improving heating technology for ingots of steels 12Kh18N10T for rolling,” Materialoved., No. 11, 2–9 (2004). N. G. Shaposhnikov, B. M. Mogutnov, S. M. Polonskaya, A. P. Kolesnichenko, and P. B. Belyavskii, “Thermodynamic modeling as a tool for improving heating technology for ingots of steels 12Kh18N10T for rolling,” Materialoved., No. 11, 2–9 (2004).
23.
go back to reference A. I. Zaitsev, I. G. Rodionova, N. G. Shaposhnikov, B. M. Mogutnov, S. F. Dunaev, P. A. Mishnev, and R. R. Adigamov, “Development f scientific bases for effective production technology of cold-rolled high-strength low-alloy steel by controlling the type, amount, and morphology of nonmetallic excess phase precipitates,” Probl. Chern. Met Materialovedeniya, No. 1, 75–85 (2012). A. I. Zaitsev, I. G. Rodionova, N. G. Shaposhnikov, B. M. Mogutnov, S. F. Dunaev, P. A. Mishnev, and R. R. Adigamov, “Development f scientific bases for effective production technology of cold-rolled high-strength low-alloy steel by controlling the type, amount, and morphology of nonmetallic excess phase precipitates,” Probl. Chern. Met Materialovedeniya, No. 1, 75–85 (2012).
24.
go back to reference N. G. Shaposhnikov, A. V. Koldaev, A. I. Zaitsev, I. G. Rodionova, D. L. D’yakonov, and N. A. Arutyunyan, “Regularities of titanium carbide precipitation in low carbon Ti–Mo microalloyed high strength steels,” Metallurgist, 60, No. 8, 810–816 (2016).CrossRef N. G. Shaposhnikov, A. V. Koldaev, A. I. Zaitsev, I. G. Rodionova, D. L. D’yakonov, and N. A. Arutyunyan, “Regularities of titanium carbide precipitation in low carbon Ti–Mo microalloyed high strength steels,” Metallurgist, 60, No. 8, 810–816 (2016).CrossRef
25.
go back to reference A. V. Koldaev, F. V. Arifulov, A. I. Zaitsev, N. A. Arutyunyan, and N. M. Aleksandrova, “Effect of excess phase precipitates on structural steel strengthening prepared by hot stamping,” Metallurg, No. 5, 50–55 (2020). A. V. Koldaev, F. V. Arifulov, A. I. Zaitsev, N. A. Arutyunyan, and N. M. Aleksandrova, “Effect of excess phase precipitates on structural steel strengthening prepared by hot stamping,” Metallurg, No. 5, 50–55 (2020).
26.
go back to reference A. V. Koldaev, D. L. D’yakonov, A. I. Zaitsev, and N. A. Arutyunyan, “Kinetics of the formation of nanosize niobium carbonitride precipitates in low-alloy structural steels,” Metallurgist, 60, No. 9, 1032–1037 (2017).CrossRef A. V. Koldaev, D. L. D’yakonov, A. I. Zaitsev, and N. A. Arutyunyan, “Kinetics of the formation of nanosize niobium carbonitride precipitates in low-alloy structural steels,” Metallurgist, 60, No. 9, 1032–1037 (2017).CrossRef
27.
go back to reference W. B. Lee, S. G. Hong, C. G. Park, K. H. Kim, and S. H. Park, “Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb,” Scripta Mater., 43, 319–324 (2000).CrossRef W. B. Lee, S. G. Hong, C. G. Park, K. H. Kim, and S. H. Park, “Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb,” Scripta Mater., 43, 319–324 (2000).CrossRef
Metadata
Title
Study of Conditions for Improving Chemical and Structural Homogeneity of Ferritic Class Hot-Rolled Steels
Authors
A. I. Zaitsev
I. G. Rodionova
A. V. Koldaev
N. A. Arutyunyan
S. F. Dunaev
Publication date
26-01-2021
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2021
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01081-5

Other articles of this Issue 9-10/2021

Metallurgist 9-10/2021 Go to the issue

Premium Partners