Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2021

09-08-2021

Study of the optical properties and frequency-dependent electrical modulus spectrum to the analysis of electric relaxation and conductivity effect in zinc oxide nanoparticles

Authors: Amit Kumar Bhunia, Sitangshu Sekhar Pradhan, Khokan Bhunia, Ashok Kumar Pradhan, Satyajit Saha

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, the optical and dielectric properties along with electric relaxation behaviour of the zinc oxide nanoparticles (ZnO NPs) with an average size ≈ 32.5 nm were studied. The band gap, and free carrier concentration of the ZnO NPs have been found to be 3.73 eV, and ≈ 5.55 × 1012 per cm3, respectively. Dispersion parameters and nature of dispersion have been studied from optical spectrum. X-ray diffraction investigation revealed that the crystalline phase is hexagonal with atomic fraction ≈ 75.44%. The overall behaviour of the dielectric constants of ZnO NPs has obeyed Koops model. Relaxation behaviour and defect state response inside ZnO NPs have been observed in the dielectric studies. The relaxation time varies from 8.0585 × 10–5 to 7.8447 × 10–5 s with temperature (T) ranges from 323 to 573 K, respectively, calculated from the electric modulus study. The AC conductivity complies the Jonscher’s universal power law and the observed hopping of electron is the correlated barrier hopping. The activation energy of the ZnO NPs is found to be ≈ 93 meV from the temperature-dependent DC conductivity analysis. The real part of complex impedance showed a negative temperature coefficient of resistance nature with increase the temperature from 473 to 673 K in the low-frequency zone. The equivalent circuit for the complex impedance analysis at T = 673 K has been studied from Cole- Cole equation and Nyquist plot. The observed properties of ZnO NPs are very important for electric storage, sensing and optical semiconductor devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference H.-M. Xiong, Y. Xu, Q.-G. Ren, Y.-Y. Xia, J. Am. Chem. Soc. 130, 7522 (2008)CrossRef H.-M. Xiong, Y. Xu, Q.-G. Ren, Y.-Y. Xia, J. Am. Chem. Soc. 130, 7522 (2008)CrossRef
2.
go back to reference Y. Nakamura, Materials, NNIN REU, Research Accomplishments ,74–75 (2006). Y. Nakamura, Materials, NNIN REU, Research Accomplishments ,74–75 (2006).
4.
5.
go back to reference A.K. Bhunia, P.K. Samanta, S. Saha, T. Kamilya, Appl. Phys. Lett. 103, 143701 (2013)CrossRef A.K. Bhunia, P.K. Samanta, S. Saha, T. Kamilya, Appl. Phys. Lett. 103, 143701 (2013)CrossRef
6.
go back to reference M. A. Garcia, J. M. Merino, E. Fernández Pinel, A. Quesada, J. de la Venta, M. L. Ruíz González, G. R. Castro, P. Crespo, J. Llopis, J. M. González-Calbet, A. Hernando, Nano Lett. 7(6), 1489 (2007). M. A. Garcia, J. M. Merino, E. Fernández Pinel, A. Quesada, J. de la Venta, M. L. Ruíz González, G. R. Castro, P. Crespo, J. Llopis, J. M. González-Calbet, A. Hernando, Nano Lett. 7(6), 1489 (2007).
8.
12.
13.
go back to reference G.S. Wang, Y.Y. Wu, X.J. Zhang, Y. Li, L. Guo, M.S. Cao, J. Mater. Chem. A 2, 8644 (2014)CrossRef G.S. Wang, Y.Y. Wu, X.J. Zhang, Y. Li, L. Guo, M.S. Cao, J. Mater. Chem. A 2, 8644 (2014)CrossRef
14.
15.
go back to reference M.M. El-Desoky, M.A. Ali, G. Afifi, H. Imam, M.S. Al-Assiri, SILICON 10, 301 (2018)CrossRef M.M. El-Desoky, M.A. Ali, G. Afifi, H. Imam, M.S. Al-Assiri, SILICON 10, 301 (2018)CrossRef
16.
go back to reference O. Schmidt, P. Kiesel, C.G. Van de Walle, N.M. Johnson, J. Nause, G.H. Dohler, Japan. J. Appl. Phys. 44, 7271 (2005)CrossRef O. Schmidt, P. Kiesel, C.G. Van de Walle, N.M. Johnson, J. Nause, G.H. Dohler, Japan. J. Appl. Phys. 44, 7271 (2005)CrossRef
17.
go back to reference Md.P. Ahmad, A.V. Rao, K.S. Babu, G.N. Rao, Mater. Chem. Phys. 224, 79–84 (2019)CrossRef Md.P. Ahmad, A.V. Rao, K.S. Babu, G.N. Rao, Mater. Chem. Phys. 224, 79–84 (2019)CrossRef
18.
20.
go back to reference M.H. Zulfiqar, M. Zubair, A. Khan, T. Hua, N. Ilyas, S. Fashu, A.M. Afzal, M.A. Safeen, R. Khan, J. Mater. Sci. Mater. Electron. 32, 9463–9474 (2021)CrossRef M.H. Zulfiqar, M. Zubair, A. Khan, T. Hua, N. Ilyas, S. Fashu, A.M. Afzal, M.A. Safeen, R. Khan, J. Mater. Sci. Mater. Electron. 32, 9463–9474 (2021)CrossRef
21.
go back to reference T.S. Soliman, A.M. Rashad, I.A. Ali, S.I. Khater, S.I. Elkalashy, Phys. Status Solidi A 2000321, 1–8 (2020) T.S. Soliman, A.M. Rashad, I.A. Ali, S.I. Khater, S.I. Elkalashy, Phys. Status Solidi A 2000321, 1–8 (2020)
22.
go back to reference A. Selmi, A. Fkiri, J. Bouslimi, H. Besbes, J. Mater. Sci. Mater. Electron. 31, 18664–18672 (2020)CrossRef A. Selmi, A. Fkiri, J. Bouslimi, H. Besbes, J. Mater. Sci. Mater. Electron. 31, 18664–18672 (2020)CrossRef
23.
go back to reference H. Saadi, Z. Benzarti, F.I.H. Rhouma, P. Sanguino, S. Guermazi, K. Khirouni, M.T. Vieira, J. Mater. Sci. Mater. Electron. 32, 1536–1556 (2021)CrossRef H. Saadi, Z. Benzarti, F.I.H. Rhouma, P. Sanguino, S. Guermazi, K. Khirouni, M.T. Vieira, J. Mater. Sci. Mater. Electron. 32, 1536–1556 (2021)CrossRef
24.
go back to reference K. Badreddine, A. Srour, R. Awad, A.I. Abou-Aly, Mater. Res. Express 7, 025016 (2020)CrossRef K. Badreddine, A. Srour, R. Awad, A.I. Abou-Aly, Mater. Res. Express 7, 025016 (2020)CrossRef
25.
go back to reference A. Modwi, K.K. Taha, L. Khezami, A.S. Al-Ayed, O.K. Al-Duaij, M. Khairy, M. Bououdina, J. Inorg. Organomet. Polym Mater. 30, 2633–2644 (2020)CrossRef A. Modwi, K.K. Taha, L. Khezami, A.S. Al-Ayed, O.K. Al-Duaij, M. Khairy, M. Bououdina, J. Inorg. Organomet. Polym Mater. 30, 2633–2644 (2020)CrossRef
26.
go back to reference S. Pervaiz, N. Kanwal, S.A. Hussain, M. Saleem, I.A. Khan, J. Polym. Res. 28, 309 (2021)CrossRef S. Pervaiz, N. Kanwal, S.A. Hussain, M. Saleem, I.A. Khan, J. Polym. Res. 28, 309 (2021)CrossRef
27.
go back to reference A.K. Bhunia, S. Saha, S.S. Pradhan, World J. Pharm. Med. Res. 3(7), 128 (2017) A.K. Bhunia, S. Saha, S.S. Pradhan, World J. Pharm. Med. Res. 3(7), 128 (2017)
28.
go back to reference A.K. Bhunia, T. Kamilya, S. Saha, Chem. Sel. 1, 2872 (2016) A.K. Bhunia, T. Kamilya, S. Saha, Chem. Sel. 1, 2872 (2016)
29.
go back to reference A.S. Hassanien, I.M. El Radaf, A.A. Akl, J. Alloys Compounds 849, 156718 (2020)CrossRef A.S. Hassanien, I.M. El Radaf, A.A. Akl, J. Alloys Compounds 849, 156718 (2020)CrossRef
30.
go back to reference V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447 (1998)CrossRef V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447 (1998)CrossRef
31.
32.
34.
go back to reference P.K. Samanta, T. Kamilya, A.K. Bhunia, S. Mandal, Adv. Sci. Eng. Med. 8, 240 (2016)CrossRef P.K. Samanta, T. Kamilya, A.K. Bhunia, S. Mandal, Adv. Sci. Eng. Med. 8, 240 (2016)CrossRef
36.
go back to reference S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, J. Mater. Sci. Mater. Electron. 27, 4163–4171 (2016)CrossRef S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, J. Mater. Sci. Mater. Electron. 27, 4163–4171 (2016)CrossRef
37.
go back to reference A.S. Hassanien, I. Sharma, A.A. Akl, J. Non-Crystalline Solids 531, 119853 (2020)CrossRef A.S. Hassanien, I. Sharma, A.A. Akl, J. Non-Crystalline Solids 531, 119853 (2020)CrossRef
39.
go back to reference A.S. Hassanien, I.M. El Radaf, Phys. B Phys. Condens. Matter 585, 412110 (2020)CrossRef A.S. Hassanien, I.M. El Radaf, Phys. B Phys. Condens. Matter 585, 412110 (2020)CrossRef
40.
go back to reference F.M. Hossain, L. Sheppard, J. Nowotny, G.E. Murch, J. Phys. Chem. Solids 69, 1820–1828 (2008)CrossRef F.M. Hossain, L. Sheppard, J. Nowotny, G.E. Murch, J. Phys. Chem. Solids 69, 1820–1828 (2008)CrossRef
41.
go back to reference A.K. Bhunia, S. Saha, J. Mater. Sci. Mater. Electron 32, 9912–9928 (2021)CrossRef A.K. Bhunia, S. Saha, J. Mater. Sci. Mater. Electron 32, 9912–9928 (2021)CrossRef
42.
go back to reference I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Mater. Chem. Phys. 139(2013), 802–810 (2013)CrossRef I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Mater. Chem. Phys. 139(2013), 802–810 (2013)CrossRef
44.
go back to reference F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Phys. B Condens. Matter 538, 160–166 (2018)CrossRef F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Phys. B Condens. Matter 538, 160–166 (2018)CrossRef
46.
47.
go back to reference J.D. Patterson, B.C. Bailey, Optical Properties of Solids, in Solid State Physics (Springer, Chambridge, 2018)CrossRef J.D. Patterson, B.C. Bailey, Optical Properties of Solids, in Solid State Physics (Springer, Chambridge, 2018)CrossRef
48.
go back to reference Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2, 821 (2003)CrossRef Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2, 821 (2003)CrossRef
49.
go back to reference G. Kaur, B. Singh, P. Singh, K. Singh, A. Thakur, M. Kumar, R. Bala, A. Kumar, Chem. Sel. 2, 2166 (2017) G. Kaur, B. Singh, P. Singh, K. Singh, A. Thakur, M. Kumar, R. Bala, A. Kumar, Chem. Sel. 2, 2166 (2017)
50.
go back to reference V. Kumar, K. Singh, M. Jain, A. Kumar, J. Sharma, A. Vij, A. Thakur, Appl. Surf. Sci. 444, 552 (2018)CrossRef V. Kumar, K. Singh, M. Jain, A. Kumar, J. Sharma, A. Vij, A. Thakur, Appl. Surf. Sci. 444, 552 (2018)CrossRef
53.
go back to reference A.S. Hassanien, A.A. Akl, A.H. Sáaedi, CrystEngComm 20, 1716–1730 (2018)CrossRef A.S. Hassanien, A.A. Akl, A.H. Sáaedi, CrystEngComm 20, 1716–1730 (2018)CrossRef
54.
55.
56.
go back to reference T.N. Ghosh, A.K. Bhunia, S.S. Pradhan, S.K. Sarkar, J. Mater. Sci. Mater. Electron. 31, 15919–15930 (2020)CrossRef T.N. Ghosh, A.K. Bhunia, S.S. Pradhan, S.K. Sarkar, J. Mater. Sci. Mater. Electron. 31, 15919–15930 (2020)CrossRef
57.
go back to reference N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967) N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967)
59.
go back to reference N. Karaoğlan, H. Uslu, T. Şemsettin Altındal, C. Bindal, J. Mater. Sci. Mater. Electron. 30, 14224 (2019)CrossRef N. Karaoğlan, H. Uslu, T. Şemsettin Altındal, C. Bindal, J. Mater. Sci. Mater. Electron. 30, 14224 (2019)CrossRef
60.
go back to reference L. Thorsten, T. Granzow, J. Wook, J. Rödel, J. Appl. Phys. 108, 014103 (2010)CrossRef L. Thorsten, T. Granzow, J. Wook, J. Rödel, J. Appl. Phys. 108, 014103 (2010)CrossRef
61.
go back to reference B. Tareev, Physics of Dielectric Materials (Mir Publishers, Moscow, 1975) B. Tareev, Physics of Dielectric Materials (Mir Publishers, Moscow, 1975)
62.
go back to reference M.M. ElFaham, A.M. Mostafa, E.A. Mwafy, J. Phys. Chem. Solids 154, 110089 (2021)CrossRef M.M. ElFaham, A.M. Mostafa, E.A. Mwafy, J. Phys. Chem. Solids 154, 110089 (2021)CrossRef
63.
go back to reference S. Bhattacharya, S.K. Saha, D. Chakravorty, Appl Phys Lett. 76, 3896 (2000)CrossRef S. Bhattacharya, S.K. Saha, D. Chakravorty, Appl Phys Lett. 76, 3896 (2000)CrossRef
64.
go back to reference M.K. Gupta, N. Sinha, B.K. Singh, N. Singh, K. Kumar, Mater. Lett. 63, 1910 (2009)CrossRef M.K. Gupta, N. Sinha, B.K. Singh, N. Singh, K. Kumar, Mater. Lett. 63, 1910 (2009)CrossRef
65.
go back to reference J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44(7), 7357–7377 (2018)CrossRef J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44(7), 7357–7377 (2018)CrossRef
66.
go back to reference L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO—nanostructures, defects, and devices. Materialstoday 10(5), 40–48 (2007) L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO—nanostructures, defects, and devices. Materialstoday 10(5), 40–48 (2007)
69.
70.
72.
73.
go back to reference E.M.A. Jamal, D.S. Kumar, M.R. Anantharaman, Bull. Mater. Sci. 34, 251 (2011)CrossRef E.M.A. Jamal, D.S. Kumar, M.R. Anantharaman, Bull. Mater. Sci. 34, 251 (2011)CrossRef
74.
77.
go back to reference T. S. Velayutham, W. H. Abd Majid, W. C. Gan, A. Khorsand Zak, S. N. Gan, J. Appl. Phys. 112, 054106 (2012). T. S. Velayutham, W. H. Abd Majid, W. C. Gan, A. Khorsand Zak, S. N. Gan, J. Appl. Phys. 112, 054106 (2012).
79.
go back to reference S.K. Samal, S. Halder, M.K. Mallick, R.N.P. Choudhary, S. Bhuyan, Appl. Phys. A. 126, 377 (2020)CrossRef S.K. Samal, S. Halder, M.K. Mallick, R.N.P. Choudhary, S. Bhuyan, Appl. Phys. A. 126, 377 (2020)CrossRef
80.
Metadata
Title
Study of the optical properties and frequency-dependent electrical modulus spectrum to the analysis of electric relaxation and conductivity effect in zinc oxide nanoparticles
Authors
Amit Kumar Bhunia
Sitangshu Sekhar Pradhan
Khokan Bhunia
Ashok Kumar Pradhan
Satyajit Saha
Publication date
09-08-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06742-4

Other articles of this Issue 17/2021

Journal of Materials Science: Materials in Electronics 17/2021 Go to the issue