Skip to main content
Top
Published in: Fire Technology 3/2021

05-09-2020

Study on Thermal Response of Adhesively Bonded Honeycomb Sandwich Structure in High Temperature

Authors: Rongnan Yuan, Yi Zhang, Yiren Qin, Shouxiang Lu

Published in: Fire Technology | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermal response of the honeycomb sandwich structure was evaluated using the steady-state method at different temperatures ranging from 100°C to 400°C. The results showed that effective thermal conductivity decreases when the temperature set is over 300°C, and the critical temperature is about 310°C. As a result, a set of experiments was conducted to observe the inner structure of the sandwich in a quest to understand why the thermal conductivity decreases. A black substance was found, and it adhered to the interfaces between the faces and the core where the adhesive is located. A series of experiments were carried out to study the thermal response of the adhesive. The TG curves showed that the total mass loss of adhesive can reach 90% due to the thermal decomposition, which can absorb a portion of energy. Meanwhile, the black substance was also produced during the TG measurements and its carbon content reached 64.38%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Amraei M et al (2014) Application of aluminium honeycomb sandwich panel as an energy absorber of high-speed train nose. J Compos Mater 48(9):1027–1037CrossRef Amraei M et al (2014) Application of aluminium honeycomb sandwich panel as an energy absorber of high-speed train nose. J Compos Mater 48(9):1027–1037CrossRef
3.
go back to reference Pan B et al (2015) Thermo-mechanical response of superalloy honeycomb sandwich panels subjected to non-steady thermal loading. Mater Des 88:528–536CrossRef Pan B et al (2015) Thermo-mechanical response of superalloy honeycomb sandwich panels subjected to non-steady thermal loading. Mater Des 88:528–536CrossRef
4.
go back to reference Zheng L et al (2013) Experimental investigation and numerical simulation of heat-transfer properties of metallic honeycomb core structure up to 900°C. Appl Therm Eng 60(1–2):379–386CrossRef Zheng L et al (2013) Experimental investigation and numerical simulation of heat-transfer properties of metallic honeycomb core structure up to 900°C. Appl Therm Eng 60(1–2):379–386CrossRef
6.
go back to reference Dharmasena KP et al (2008) Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int J Impact Eng 35(9):1063–1074CrossRef Dharmasena KP et al (2008) Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int J Impact Eng 35(9):1063–1074CrossRef
7.
go back to reference Foo CC et al (2007) Mechanical properties of Nomex material and Nomex honeycomb structure. Compos Struct 80(4):588–594CrossRef Foo CC et al (2007) Mechanical properties of Nomex material and Nomex honeycomb structure. Compos Struct 80(4):588–594CrossRef
8.
go back to reference Tan C, Akil HM (2012) Impact response of fiber metal laminate sandwich composite structure with polypropylene honeycomb core. Compos Part B Eng 43(3):1433–1438CrossRef Tan C, Akil HM (2012) Impact response of fiber metal laminate sandwich composite structure with polypropylene honeycomb core. Compos Part B Eng 43(3):1433–1438CrossRef
9.
go back to reference Keerthan P, Mahendran M (2012) Thermal performance of composite panels under fire conditions using numerical studies: plasterboards, rockwool, glass fibre and cellulose insulations. Fire Technol 49(2):329–356CrossRef Keerthan P, Mahendran M (2012) Thermal performance of composite panels under fire conditions using numerical studies: plasterboards, rockwool, glass fibre and cellulose insulations. Fire Technol 49(2):329–356CrossRef
10.
go back to reference Lattimer BY et al (2009) Thermal response of composite materials to elevated temperatures. Fire Technol 47(4):823–850CrossRef Lattimer BY et al (2009) Thermal response of composite materials to elevated temperatures. Fire Technol 47(4):823–850CrossRef
11.
go back to reference Anjang A et al (2014) Tension modelling and testing of sandwich composites in fire. Compos Struct 113:437–445CrossRef Anjang A et al (2014) Tension modelling and testing of sandwich composites in fire. Compos Struct 113:437–445CrossRef
12.
go back to reference Hörold A et al (2013) Structural integrity of sandwich structures in fire: an intermediate-scale approach. Compos Interfaces 20(9):741–759CrossRef Hörold A et al (2013) Structural integrity of sandwich structures in fire: an intermediate-scale approach. Compos Interfaces 20(9):741–759CrossRef
13.
go back to reference Goodrich TW, Lattimer BY (2012) Fire decomposition effects on sandwich composite materials. Compos Part A Appl Sci Manuf 43(5):803–813CrossRef Goodrich TW, Lattimer BY (2012) Fire decomposition effects on sandwich composite materials. Compos Part A Appl Sci Manuf 43(5):803–813CrossRef
14.
go back to reference Swann RT, Pittman CM (1961) Analysis of effective thermal conductivities of honeycomb-core and corrugated-core sandwich panels. National Aeronautics and Space Administration, Washington Swann RT, Pittman CM (1961) Analysis of effective thermal conductivities of honeycomb-core and corrugated-core sandwich panels. National Aeronautics and Space Administration, Washington
15.
go back to reference Caogen Y et al (2008) A study on metallic thermal protection system panel for Reusable Launch Vehicle. Acta Astronaut 63(1–4):280–284CrossRef Caogen Y et al (2008) A study on metallic thermal protection system panel for Reusable Launch Vehicle. Acta Astronaut 63(1–4):280–284CrossRef
16.
go back to reference Fatemi J, Lemmen M (2009) Effective thermal/mechanical properties of honeycomb core panels for hot structure applications. J Spacecr Rockets 46(3):514–525CrossRef Fatemi J, Lemmen M (2009) Effective thermal/mechanical properties of honeycomb core panels for hot structure applications. J Spacecr Rockets 46(3):514–525CrossRef
17.
go back to reference Daryabeigi K (2002) Heat transfer in adhesively bonded honeycomb core panels. J Thermophys Heat Transf 16(2):217–221CrossRef Daryabeigi K (2002) Heat transfer in adhesively bonded honeycomb core panels. J Thermophys Heat Transf 16(2):217–221CrossRef
18.
go back to reference Sánchez-Carballido S et al (2016) A quantitative infrared imaging system for in situ characterization of composite materials in fire tests. Fire Technol 53(3):1309–1331CrossRef Sánchez-Carballido S et al (2016) A quantitative infrared imaging system for in situ characterization of composite materials in fire tests. Fire Technol 53(3):1309–1331CrossRef
19.
go back to reference Garrido M et al (2015) Adhesively bonded connections between composite sandwich floor panels for building rehabilitation. Compos Struct 134:255–268CrossRef Garrido M et al (2015) Adhesively bonded connections between composite sandwich floor panels for building rehabilitation. Compos Struct 134:255–268CrossRef
20.
go back to reference Adams R, Drinkwater B (1997) Nondestructive testing of adhesively-bonded joints. NDT E Int 30(2):93–98CrossRef Adams R, Drinkwater B (1997) Nondestructive testing of adhesively-bonded joints. NDT E Int 30(2):93–98CrossRef
21.
go back to reference Pascual C et al (2017) Adhesively-bonded GFRP-glass sandwich components for structurally efficient glazing applications. Compos Struct 160:560–573CrossRef Pascual C et al (2017) Adhesively-bonded GFRP-glass sandwich components for structurally efficient glazing applications. Compos Struct 160:560–573CrossRef
22.
go back to reference Henderson JB et al (1985) A model for the thermal response of polymer composite materials with experimental verification. J Compos Mater 19(6):579–595CrossRef Henderson JB et al (1985) A model for the thermal response of polymer composite materials with experimental verification. J Compos Mater 19(6):579–595CrossRef
23.
go back to reference Bhat T et al (2015) Fire structural resistance of basalt fibre composite. Compos Part A Appl Sci Manuf 71:107–115CrossRef Bhat T et al (2015) Fire structural resistance of basalt fibre composite. Compos Part A Appl Sci Manuf 71:107–115CrossRef
24.
go back to reference Looyeh M et al (2001) Thermochemical responses of sandwich panels to fire. Finite Elem Anal Des 37(11):913–927CrossRef Looyeh M et al (2001) Thermochemical responses of sandwich panels to fire. Finite Elem Anal Des 37(11):913–927CrossRef
Metadata
Title
Study on Thermal Response of Adhesively Bonded Honeycomb Sandwich Structure in High Temperature
Authors
Rongnan Yuan
Yi Zhang
Yiren Qin
Shouxiang Lu
Publication date
05-09-2020
Publisher
Springer US
Published in
Fire Technology / Issue 3/2021
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-01033-6

Other articles of this Issue 3/2021

Fire Technology 3/2021 Go to the issue